FPGA Documentation

Lecture 05

Josh Brake
Harvey Mudd College

Outline

- Documentation Overview
- FPGA documentation Bingo
- Manual design mapping exercise
- Quick basic testbench review

Learning Objectives

By the end of this lecture you should be able to...

- Find basic specs in the FPGA documentation to answer questions about your system like DC logic levels, max clock speed, etc.
- Determine the number of logic cells required by simple Verilog modules.
- Recall how to write a Verilog testbench

Lattice iCE40UP Documentation

Documentation

Quick Reference		erence	Technical Resources	Information Resources		Downloads		
Key Documents		tuments	Reference Design	Product Brochure		IBIS Model		
Data Sheet		et	Product Change Notification	Quality	Quality Assurance			
Application Note		n Note	Schematic	White F	White Paper			
Pin & Package		kage						
Use	r Man	ual						
⊠ [*]	\downarrow	TITLE ~		NUMBER	VERSION	DATE	FORMAT	SIZE
		iCE40 UltraPlus Family Data	sheet ↓	FPGA-DS-020	08 2.0	9/20/2021	PDF	1.1 MB
		Memory Usage Guide for iC	E40 Devices ↓	FPGA-TN-020	02 1.7	10/14/2020	PDF	954.3 KB
		iCE40 I2C and SPI Hardened	d IP Usage Guide ↓	FPGA-TN-020	10 1.7	9/11/2020	PDF	1.3 MB
		iCE40 SPRAM Usage Guide	↓	FPGA-TN-020	22 1.3	4/16/2021	PDF	912.9 KB
		iCE40 Hardware Checklist	↓	FPGA-TN-020	06 2.0	3/10/2022	PDF	355.4 KB
		iCE40 Oscillator Usage Guid	de ↓	FPGA-TN-020	08 1.7	1/25/2021	PDF	675 KB
		iCE40 sysCLOCK PLL Design	and User Guide 🗼	FPGA-TN-020	52 1.4	4/30/2022	PDF	1.3 MB
		iCE40 LED Driver User Guid	e 🎵	FPGA-TN-020	21 1.5	11/29/2021	PDF	2 MB

Lattice iCE40UP Documentation

- Info on FPGA chip itself
 - DC logic levels
 - Timing information
 - Package dimensions
 - Pinout information
 - Block diagrams of internal components

iCE40 UltraPlus Family Data Sheet

Package Diagrams

Data Sheet

Data Sheet

FPGA-DS-02008-2.0

FPGA-DS-02053-6.8

UPduino Documentation

Specs specific to the UPduino board

- Schematics
- Supporting hardware
- Programming instructions

UPduino Documentation %

tinyVision.ai

UPDuino v3.0: PCB Design Files, Designs, Documentation

The UPDuino v3.0 is a small, low-cost FPGA board. The board features an on-board FPGA programmer, flash and LED with _all_ FPGA pins brought out to easy to use 0.1" header pins for fast prototyping.

The tinyVision.ai UPduino v3.0 Board Features:

- Lattice UltraPlus ICE40UP5K FPGA with 5.3K LUTs, 1Mb SPRAM, 120Kb DPRAM, 8 Multipliers
- FTDI FT232H USB to SPI Device
- _ALL_ 32 FPGA GPIO on 0.1" headers
- _ALL_ FTDI pins brought to test points
- 4MB SPI Flash
- RGB LED
- On board 3.3V and 1.2V Regulators, can supply 3.3V to your project
- Open source schematic and layout using KiCAD design tools
- Integrated into the open source APIO toolchain

FPGA Documentation Bingo

Bingo Card

#	Question	Answer	Reference
1	Recommended operating voltage for VCCIO		
2	I/O pin input capacitance		
3	3.3 V LVCMOS Logic Levels		
4	Recommended core input voltage		
5	Maximum speed of sysI/O buffer		
6	Maximum PLL output frequency		
7	Maximum output current		
8	Operating temperature range		
9	Input leakage current		
10	What FPGA device is on the UPduino v3.1 board?		
11	Major elements in a Logic Cell (LC)		
12	What is the range of clock frequencies for the high speed internal oscillator?		
13	How many logic element are on our FPGA?		

Bingo Card

#	Question	Answer	Reference	
14	How many EBR memory blocks?			
15	How many SPRAM memory blocks?			
16	What is the difference between EBR and SPRAM?			
17	How many I/O banks?			
18	Data buss skew across a bank of I/Os?			
19	Propagation delay through 4-input LUT?			
20	PIO input register setup time			
21	PIO input register hold time			
22	PIO output register clock to output (Q)			
23	Number of multipliers in the FPGA			
24	Package for our FPGA chip			
25	How many user I/Os does the FPGA chip have?			
26	What is the area of the FPGA package?			
27	What voltage does the FPGA core run on?			

Manual Design Mapping

Going from Verilog HDL to logic cells

• 2-input AND:	
• 4-input AND:	
• 5-input AND:	
• 16-input AND:	
Arbitrary function of 5 inputs:	
Arbitrary function of 6 inputs:	
	<u> </u>
• 2 inverters:	
Divide by 3 counter:	

Wrap up

- FPGA documentation contains important information like logic levels and timing specs
- Learning to navigate the documentation is a skill that must be practiced. Try to browse instead of search.
- As a hardware designer, you should be able to explain how many logic cells