The Advanced Encryption
Standard (AES) on an FPGA

Lecture 14

Josh Brake
Harvey Mudd College

Outline

e AES Overview

e AES Implementation Details
= Block diagram
= Embedded Block RAMs

= Timing

2/23

Learning Objectives

By the end of this lecture you will...

e Have an operational understanding of the fundamental mathematics used in AES

e Understand the basic process of AES

3/23

The Advanced Encryption
Standard

AES Overview

From the spec:

The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic
algorithm that can be used to protect electronic data. The AES algorithm is a
symmetric block cipher that can encrypt (encipher) and decrypt (decipher)
information. Encryption converts data to an unintelligible form called ciphertext;

decrypting the ciphertext converts the data back into its original form, called
plaintext.

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to
encrypt and decrypt data in blocks of 128 bits.

5/23

128-bit AES

e The cipher works by taking a plain text message and scrambling it into a ciphertext
message in a way that is hard to reverse.

e Scrambling is done 10 times to make it hard. The key changes from round to round.

6/23

AES Data Organization

128-bit message is organized as a matrix of 16 bytes (4x4).

input bytes
ino in4 iﬂg in12
in1 ins ing in13
inz z'n6 iﬂ]g in14
in3 iﬂ}' iﬂ]] inls

9

Figure 3. State array input and output.

State array

S0,0 | So,1 | So2 | So3
S10 | S1,1 | S1,2 | 1,3
820 | S2,1 | $22 | 523
§30 | 531 | 832 | 833

9

output bytes

oul

out,

oulty

out,

out

outs

oulg

outs

out,

oultg

out

outy

outs

out;

out

oultis

7123

AES Cipher Process

Each step of the cipher involves the following steps

1. SubBytes: take each byte and replace it with a different byte using a randomish
lookup table.

2. ShiftRows: move bytes around in the rows

3.MixCo lumns: funky Galois multiplication on elements of the columns

4. AddRoundKey: XOR with the key for the current round.

8/23

AES Cipher Pseudocode

Cipher (byte in[4*Nb], byte out[4*Nb], word w[Nb* (Nr+l)])
begin
byte state[4,Nb]

state = in

AddRoundKey (state, w[0, Nb-1]) // See Sec. 5.1.4

for round = 1 step 1 to Nr-1
SubBytes (state) // See Sec. 5.1.1
ShiftRows (state) // See Sec. 5.1.2
MixColumns (state) // See Sec. 5.1.3
AddRoundKey (state, w[round*Nb, (round+1l)*Nb-1])

end for

SubBytes (state)
ShiftRows (state)
AddRoundKey (state, w[Nr*Nb, (Nr+l)*Nb-1])

out = state
end

Figure 5. Pseudo Code for the Cipher.'

9/23

AES Implementation

Design Process
Design the AES algorithm in the following way:

1. Think about each individual transformation as a separate module. Is the operation of
the module combinational or sequential?

2. What are the inputs?

3. What are the outputs?

4, Write testbenches for each individual module and test each module individually.

5. If there is a sequential element, design an FSM. (Hint: the structure from a processor of
controller and datapath is very helpful.)

11/23

AES Block Diagram

Spend a few moments thinking through one round of the AES cipher. Draw a block
diagram which shows each step of the cipher (e.g., function call in the pseudo code) as an

individual block. Consider the size of the inputs/outputs.

As you design, consider the following questions:

How many rounds are required for AES-1287

How does the final round differ from the all the others?

How would you prevent a certain operation from applying in a certain round?
Can the entire process be implemented as combinational logic?

Can the cipher be implemented as a sequential process?

What tradeoffs exist between a fully combinational vs. a sequential design?

12/23

State matrix

How do we transform the 128-bit input into the state array?

13/23

Input2State Verilog

14 /23

SubBytes

What are the inputs?
What are the outputs?

What is this module doing (in words)?

15/23

SubBytes Verilog

What does the Verilog look like to accomplish this?

16 /23

ShiftRows

What are the inputs?
What are the outputs?

What is this module doing (in words)?

17 /23

MixColumns

What are the inputs?
What are the outputs?

What is this module doing (in words)?

18/23

AddRoundKey

What are the inputs?

What are the outputs?

What is this module doing (in words)?

19/23

GenerateRoundkey

What are the inputs?
What are the outputs?

What is this module doing (in words)?

20/23

Embedded Block RAMs

3.1.5. sysMEM Embedded Block RAM Memory

Larger iCE40 UltraPlus device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each
4 kbit in size. This memory can be used for a wide variety of purposes including data buffering and FIFO.

sysMEM Memory Block

The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources.

Each block can be used in a variety of depths and widths as listed in Table 3.4.
Table 3.4. sysMEM Block Configurations

Block RAM
Configuration
and Size

Block RAM
Configuration

WADDR Port WDATA Port RADDR Port RDATA Port MASK Port
Size (Bits) Size (Bits) Size (Bits) Size (Bits) Size (Bits)

SB_RAM256x16
SB_RAM256x16NR
SB_RAM256x16NW
SB_RAM256x16NRNW

256x16 (4 k) 8 [7:0] 16 [15:0] 8[7:0] 16 [15:0] 16 [15:0]

SB_RAM512x8
SB_RAM512x8NR
SB_RAMS512x8NW
SB_RAM512x8NRNW

512x8 (4 k) 9 [8:0] 8 [7:0] 9 [8:0] 8[7:0] No Mask Port

SB_RAM1024x4
SB_RAM1024x4NR
SB_RAM1024x4NW
SB_RAM1024x4NRNW

1024x4 (4 k) 10 [9:0] 4 [3:0] 10 [9:0] 4 [3:0] No Mask Port

SB_RAM2048x2
SB_RAM2048x2NR
SB_RAM2048x2NW
SB_RAM2048x2NRNW

2048x2 (4 k) 11 [10:0] 2 [1:0] 11 [10:0] 2[1:0] No Mask Port

Note: For iCE40 UltraPlus, the primitive name without “Nxx” uses rising-edge Read and Write clocks. “NR" uses rising-edge Write
clock and falling-edge Read clock. “NW” uses falling-edge Write clock and rising-edge Read clock. “NRNW" uses failing-edge clocks
on both Read and Write.

21/23

Embedded Block RAM: Block Diagram

RAMA4k Block

Figure 3.4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the
input data and addresses for the ports are registered at the input of the memory array.

Write Port Read Port
Al A
e N e N
WDATA[15:0] RDATA[15:0]
- -
MASK[15:0]
>
WADDR[7:0] RADDR[7:0]
> RAMAK -
RAM Block
WE RE
> (256x16) -
WCLKE RCLKE
> -
WCLK Ej:] [:E]RCLK

Figure 3.4. sysMEM Memory Primitives

22 /23

Cascading Memories

4.3.1. Address Cascading (or Depth Cascading)

Address/Depth cascading is useful when the memories are required to have the capacity of storing more words while
keeping the data width the same. In this case additional user logic is needed to decode the address.

Figure 4.1 shows an example of the depth cascading of a 32K x 16 SPRAM. Additional logic is required that guides the
data to the correct memory block using Muxes and Demuxes. The rest of the signals (that are not shown), should be
connected to both the memory blocks without any other logic requirements.

ADDRESS [14:0]
P-{ DATAIN [15:0] DATAOUT [15:0] &
DATAIN [15:0]
[| MASWREN [3:0]
MASKWREN [3:0] i
WREN T
Single Port RAM
s wesaer Primitive
SB_SPRAM256KA
aock
sTANDBY T
SLEEp =
POWEROFF D
| DATAIN [15:0] DATAOUT [15:0]
- | MASKWREN [3:0]
WREN
Single Port RAM
GlAEED Primitive
SB_SPRAM256KA

STANDBY

SLEEP

POWEROFF

Figure 4.1. Address/Depth Cascading Example for 32K x 16 SPRAM using Primitive

23 /23

