
The Advanced Encryption
Standard (AES) on an FPGA

Lecture 14

Josh Brake
Harvey Mudd College

1 / 23

Outline
AES Overview

AES Implementation Details

Block diagram

Embedded Block RAMs

Timing

2 / 23

Learning Objectives
By the end of this lecture you will…

Have an operational understanding of the fundamental mathematics used in AES

Understand the basic process of AES

3 / 23

The Advanced Encryption
Standard

4 / 23

AES Overview
From the spec:

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to
encrypt and decrypt data in blocks of 128 bits.

The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic
algorithm that can be used to protect electronic data. The AES algorithm is a
symmetric block cipher that can encrypt (encipher) and decrypt (decipher)
information. Encryption converts data to an unintelligible form called ciphertext;
decrypting the ciphertext converts the data back into its original form, called
plaintext.

5 / 23

128-bit AES
The cipher works by taking a plain text message and scrambling it into a ciphertext
message in a way that is hard to reverse.

Scrambling is done 10 times to make it hard. The key changes from round to round.

6 / 23

AES Data Organization
128-bit message is organized as a matrix of 16 bytes (4x4).

7 / 23

AES Cipher Process
Each step of the cipher involves the following steps

1. SubBytes: take each byte and replace it with a different byte using a randomish
lookup table.

2. ShiftRows: move bytes around in the rows

3. MixColumns: funky Galois multiplication on elements of the columns

4. AddRoundKey: XOR with the key for the current round.

8 / 23

AES Cipher Pseudocode

9 / 23

AES Implementation

10 / 23

Design Process
Design the AES algorithm in the following way:

1. Think about each individual transformation as a separate module. Is the operation of
the module combinational or sequential?

2. What are the inputs?

3. What are the outputs?

4. Write testbenches for each individual module and test each module individually.

5. If there is a sequential element, design an FSM. (Hint: the structure from a processor of
controller and datapath is very helpful.)

11 / 23

AES Block Diagram
Spend a few moments thinking through one round of the AES cipher. Draw a block
diagram which shows each step of the cipher (e.g., function call in the pseudo code) as an
individual block. Consider the size of the inputs/outputs.

As you design, consider the following questions:

How many rounds are required for AES-128?

How does the final round differ from the all the others?

How would you prevent a certain operation from applying in a certain round?

Can the entire process be implemented as combinational logic?

Can the cipher be implemented as a sequential process?

What tradeoffs exist between a fully combinational vs. a sequential design?

12 / 23

State matrix
How do we transform the 128-bit input into the state array?

It’s easier to manipulate the data using the array notation as described in the spec, so let’s
define a new module that restructures the 128-bit key as a 4x4 array of bytes.

// AES state type definition1
typedef logic [0:3][0:3] [7:0] aes_state_t;2

13 / 23

Input2State Verilog
// AES state type definition1
typedef logic [0:3][0:3] [7:0] aes_state_t;2

3
`include "AESTypes.svh"4

5
module Input2State(6
 input logic [127:0] in,7
 output aes_state_t aes_state8
);9

10
 // Takes in the 1d in and transforms it into the state array11
 assign aes_state[0][0] = in[127:120];12
 assign aes_state[1][0] = in[119:112];13
 assign aes_state[2][0] = in[111:104];14
 assign aes_state[3][0] = in[103:96];15

16
 ...17

18
 assign aes_state[0][3] = in[31:24];19
 assign aes_state[1][3] = in[23:16];20
 assign aes_state[2][3] = in[15:8];21
 assign aes_state[3][3] = in[7:0];22

23
endmodule24

14 / 23

SubBytes
What are the inputs?

A byte.

What are the outputs?

A byte mapped through the sbox substitution lookup table.

What is this module doing (in words)?

Replacing one byte with another byte.

15 / 23

SubBytes Verilog
What does the Verilog look like to accomplish this?

module SubstitutionBox (1
 input logic [7:0] a,2
 output logic [7:0] y3
);4

5
 // Signal to store entries for byte substitution6
 logic [7:0] sbox_lut [255:0];7

8
 // Intialize the RAM with the values for the byte substitution9
 initial $readmemh("sbox.txt", sbox_lut);10

11
 // Combinationally assign output (no clock)12
 assign y = sbox_lut[a];13

14
endmodule15

16 / 23

ShiftRows
What are the inputs?

A row of state (32 bits, 4 bytes, 1 word).

What are the outputs?

A shi�ed row (32 bits, 4 bytes, 1 word).

What is this module doing (in words)?

Circular le� shi� each row based on the row number (e.g., row 0 unshi�ed, row 1 shi�ed to
the le� by one element, etc.)

17 / 23

MixColumns
What are the inputs?

A column of the state matrix (32 bits, 4 bytes, 1 word).

What are the outputs?

A new of the state matrix (32 bits, 4 bytes, 1 word).

What is this module doing (in words)?

Transforming the column according to a matrix multiplication. This can be instantiated as
a somewhat tricky-looking Galois multiplication.

18 / 23

AddRoundKey
What are the inputs?

State matrix.

Previous round key (128-bits).

What are the outputs?

New state (128-bits).

What is this module doing (in words)?

Computing a new round key based on the previous one.

19 / 23

GenerateRoundkey
What are the inputs?

The key.

What are the outputs?

A key schedule (set of 128-bit keys)

What is this module doing (in words)?

Create the key schedule based on the initial key and a set of other operations.

20 / 23

Embedded Block RAMs

21 / 23

Embedded Block RAM: Block Diagram

22 / 23

Cascading Memories

23 / 23

