Introduction to Real Time
Operating Systems

Lecture 17

Josh Brake
Harvey Mudd College

1/31

Learning Objectives

By the end of this lecture you will be able to:

e Articulate the importance of multitasking and how computers are not true multitasking
systems.

e Describe the basic concepts of a real-time operating system

e Compare and contrast the tradeoffs of various scheduling algorithms.

2/31

Outline

e Motivation for multitasking and real-time operating systems
e Introduction to key concepts

= Tasks

= Scheduling

= Semaphores

= Queues

= |nterrupts and Events

e |ntroduction to FreeRTOS

3/31

Multitasking Scenarios

e Printing information to a display in response to keyboard input
e Car

= Airbag response

= Braking system
e Robotics

= Flight system in a drone

= Control or signal processing algorithms

Soft vs. hard real-time requirements

e Soft real-time requirements are those that state a time deadline—but breaching the
deadline would not render the system useless.

e Hard real-time requirements are those that state a time deadline—and breaching the
deadline would result in absolute failure of the system.

4 /31

Why multitasking?

e Bare-metal programming

= Setup and initialization - runs once

= |nfinite loop - runs continuously and handles main tasks
e Bare-metal + interrupts

= Can now incorporate additional functionality which quickly responds to inputs and
can guarantee that we don’t miss important events.

= Examples: Receiving and processing UART data, catching button inputs

e But as we build more and more complicated programs, it is hard to guarantee specific
timing constraints are met.

= Many different scenarios

= Lots of edge cases which makes things very difficult to debug.

5/31

Why multitasking?

e Enter the concept of multitasking

= Multitasking: means that several tasks (or programs) are processed in parallel on the
same CPU

e Only have a single core on your microcontroller so this is not true parallelism, just
swapping different tasks in and out

e QOperations inside your bare-metal infinite loops are tasks.

= For example, consider that you want to blink 2 LEDs at different frequencies. In bare-
metal, you could have your infinite loop use timers to poll a timer and then toggle
the LEDs based on the current time.

= Works, but inefficient as the processor is always running.

6 /31

Task States

Not Running

vTaskResume()

vTaskSuspend()

vTaskSuspend()

vTaskSuspend()

Event occured

Blocked

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects: Using the FreeRTOS Multitasking Kernel.

Blocking

7131

The Mudd Multitasking Kernel

e You are taking E155, Clinic, and an HSA. In addition, you want to sleep 8 hours a night
and have time to hang out with your friends playing board games over Zoom.

e Imagine you must manage your clinic mid-year report, MicroPs final project, and must
read a book and write a paper for your HSA in addition to chatting with your friends.
You only have one brain.

e What are different ways you can manage your tasks?

8 /31

Scheduling Algorithms

The scheduling algorithm decides which task is running on the core.

Three main algorithms:

e Co-operative scheduling
e Round-robin scheduling

e Preemptive scheduling

9/31

Co-operative scheduling

Task1l() {
// Task 1 code

by

Task2() {
// Task 2 code

¥

Task3() {
// Task 3 code
}

while(1) {
Taskl1();
Task2();
Task3();
¥

Each task must yield control or else it can starve all other tasks.

Task 1

Task 2

Task 3

L

Time

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking

Projects: Using the FreeRTOS Multitasking Kernel.

10/ 31

Co-operative scheduling

Rules

1. Tasks must not block the overall execution, for example, by using delays or waiting for
some resources and not releasing the CPU.

2. The execution time of each tasks should be acceptable to other tasks.

3. Tasks should exit as soon as they complete their processing.

4, Tasks do not have to run to completion and they can exit for example before waiting for
a resource to be available.

5. Tasks should resume their operations from the point after they release the CPU.

11 /31

Round-robin scheduling

The scheduler creates a periodic time slice and equally divides CPU use between tasks.

Advantages: A

e |tiseasytoimplement.

Time slice
P R—

o Every task gets an equal share of the CPU.
Task 1

Task 2

Task 3

e Easyto compute the average response time.

>

Disadvantages:

))] Ibrahim, Dogan. ARM-Based Microcontroller Multitasking
e Itisnot generally good to give the same CPU time Projects: Using the FreeRTOS Multitasking Kernel.

to each task.
e Some important tasks may not run to completion.

e Not suitable for real-time systems where tasks
usually have different processing requirements.

Time

12 /31

Preemptive Scheduling

e Most common scheduling algorithm in
real-time systems

e Tasks are assigned priorities

e Higher priority tasks can preempt lower
priority tasks to take the CPU

e Need to be careful to assign priorities
appropriately or you can starve lower
priority tasks

Q: How are tasks and their priorities different than interrupts?

Task priority
A

Task 3

Task 2

Task 1

Task 2

Task 1

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking
Projects: Using the FreeRTOS Multitasking Kernel.

Time

13/ 31

Scheduling Algorithm Goals

e Be fair such that each process gets a fair share of the CPU.

e Be efficient by keeping the CPU busy.

e The scheduler should require minimal CPU time.

e Maximize throughput by minimizing the time users must wait.

e Be predictable so that same tasks take the same time when run multiple times.
e Minimize response time,

e Maximize resource use.

e Enforce priorities.

e Avoid starvation.

14/ 31

Other scheduling algorithms

e First-come first-served

Shortest time remaining first

e Longest time remaining first

Multilevel queue scheduling

e Dynamic priority scheduling

15/ 31

FreeRTOS

Introduction to FreeRTOS

e We will use FreeRTOS as our example

= Other popular RTOSes include Zephyr, NuttX, VxWorks. Varying licensing
agreements.

= Like a programming language: once you learn one RTOS, concepts transfer to
others.

e FreeRTOS licensed under MIT license - very permissive.

= Can be used in commercial applications and users retain all ownership of their IP.

17 /31

Code Structure of FreeRTOS

FreeRTOS
Source
tasks.c FreeRTOS
list.c FreeRTOS
queue.cC FreeRTOS
timers.c FreeRTOS
event groups.c FreeRTOS
croutine.c FreeRTOS

source
source
source
source
source
source

file

file -
file -
file -

file
file

- always required

always required

nearly always required
optional

- optional

- optional

Figure 2. Core FreeRTOS source files within the FreeRTOS directory tree

FreeRTOS

Source

portable Directory containing all port specific source files

—I[

—[etc.]

compiler 1] Directory containing port
—[architecture 1] Contains files for
I—[architecture 2] Contains files for
L-[architecture 3] Contains files for
—[compiler 2] Directory containing port

I—[architecture 1] Contains files for
I—[architecture 2] Contains files for

—MemMang Directory containing the 5 alternative heap allocation source files

files specific to compiler 1
the compiler 1 architecture 1 port
the compiler 1 architecture 2 port
the compiler 1 architecture 3 port
files specific to compiler 2

the compiler 2 architecture 1 port
the compiler 2 architecture 2 port

Figure 3. Port specific source files within the FreeRTOS directory tree

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

18 /31

Data Types and Naming Conventions

e Port specific datatypes TickType_t -holds tick count value

e Baselype_t -Basetype value which is most efficient data type on a given system.
Typically the word size.

19/ 31

Naming Conventions: Variable Names

Variable Names - prefixes tell their type

Prefix Type

C char

S 1nt1l6_t (short)

1 1nt32_t (long)

X BaseType_t and other non-standard types (structs, task

handles, queue handles, etc.)

20 /31

Naming Conventions: Function Names

Function Description

vTaskPrioritySet() returnsavoid andis defined within task.c.

XQueueReceive() returns a variable of type BaseType_t and is defined
within queue.c.

pvTimerGetTimerID() returnsa pointerto void and is defined
within timers.c.

21 /31

Template Project

int main(void)

{
/* Perform any hardware setup necessary. */
prvSetupHardware () ;
/* —--- APPLICATION TASKS CAN BE CREATED HERE --- */

/* Start the created tasks running. */
vTaskStartScheduler () ;

/* Execution will only reach here if there was insufficient heap to
start the scheduler. */

for(;;)

return 0;

Listing 1. The template for a new main() function

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

22 /31

Creating Tasks

BaseType t xTaskCreate(TaskFunction t pvTaskCode,
const char * const pcName,
uintl6é_t usStackDepth,
void *pvParameters,
UBaseType t uxPriority,
TaskHandle t *pxCreatedTask);

Listing 13. The xTaskCreate() APl function prototype

Return

e pdPassorpdFail -indicates if task was successfully created.

Parameters

e pvTaskCode - pointer to C function that implements that task

e pcName - Descriptive name for the task

e usStackDepth - size of stack to be allocated by the kernel when creating the stack (in words)

e pvParameters - pointer to void to pass in parameters. Need to cast void pointer to correct type inside the function to use it.
e uxPriority - Defines the priority of the task

e pxCreatedTask - handle to created task

23 /31

Printing to Terminal

void vTaskl(void *pvParameters) void vTask2(void *pvParameters)
{ {
const char *pcTaskName = "Task 1 is running\r\n";

const char *pcTaskName = "Task 2 is running\r\n";
volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

/* As per most tasks, this task is implemented in an infinite loop. */ /* As per most tasks, this task is implemented in an infinite loop. */

for(;:) for(;;)

{ {
/* Print out the name of this task. */

/* Print out the name of this task. */
vPrintString(pcTaskName) ;

vPrintString(pcTaskName) ;

/* Delay for a period. */ /* Delay for a period. */

for(ul = 0; ul < mainDELAY LOOP_COUNT; ul++) for(ul = 0; ul < mainDELAY LOOP_COUNT; ul++)

{ {
/* This loop is just a very crude delay implementation. There is /* This loop is just a very crude delay implementation. There is
nothing to do in here. Later examples will replace this crude nothing to do in here. Later examples will replace this crude

loop with a proper delay/sleep function. */ loop with a proper delay/sleep function. */

int main(void) {
xTaskCreate(vTaskl, “Task 1", 1000, NULL, 1, NULL);
xTaskCreate(vTask2, “Task 2", 1000, NULL, 1, NULL);
vTaskStartScheduler();

for(;;);

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

24 /31

Printing to Terminal Example Output

int main(void) {
xTaskCreate(vTaskl, “Task 1", 1000, NULL, 1, NULL);
xTaskCreate(vTask2, "“Task 2", 1000, NULL, 1, NULL);
vTaskStartScheduler();

for(;;);

Attime t1, Task 1 [\, | Attime t2 Task 2 enters the Running [\ i CG\WINDOWS\system32\cmd.exe - rtosdemo ‘
enters the Running state and executes until time 13 - at 61\ Tompdrtosdemo

state and executes which point Task1 re-enters the i
until time t2 Running state a wning
T 7 inning
k running
running
L 4 mning
: t ¢ 3 i 3 running
H H running
Task 1 (e — ask 2 iz running
: H p H : Tas mnning

mnning

is running

Task2 g e
U 2 B Tme

Figure 10. The output produced when Example 1 is executed’
Figure 11. The actual execution pattern of the two Example 1 tasks

25/ 31

Example: Priorities

/* Define the strings that will be passed in as the task parameters. These are
defined const and not on the stack to ensure they remain wvalid when the tasks are
executing. */

static const char *pcTextForTaskl
static const char *pcTextForTask2

"Task 1 is running\r\n";
"Task 2 is running\r\n";

int main(void)

{

/* Create the first task at priority 1. The priority is the second to last
parameter. */
xTaskCreate(vTaskFunction, "Task 1", 1000, (void*)pcTextForTaskl, 1, NULL);

/* Create the second task at priority 2, which is higher than a priority of 1.

The priority is the second to last parameter. */
xTaskCreate(vTaskFunction, "Task 2", 1000, (wvoid*)pcTextForTask2, 2, NULL);

/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler() ;

/* Will not reach here. */
return 0;

Listing 21. Creating two tasks at different priorities

The scheduler runs in the tick interrupt [
Tick but selects the same task. Task 2 is
interrupt always in the Running state and Task 1 is
occurs always in the Not Running state

Kernel

Task 1

Task 2

Figure 14. The execution pattern when one task has a higher priority than the other

26 /31

Revisiting Not Running State

Three Options

e Suspended
e Ready
e Blocked

Not Running
(super state)

vTaskSuspend()
called

Event

) /J;
Blocked
=)

vTaskSuspend(
called

.

Suspended

vTaskResume()

called

N

v

vTaskSuspend()

called

Blocking API
function called

Figure 15. Full task state machine

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A

Hands-On Tutorial Guide. 2016.

27 1 31

Example: Printing with better delay using blocked
state

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

const TickType_t xDelay250ms = pdMS_TO_TICKS(250);

/* The string to print out is passed in via the parameter. Cast this to a
character pointer. */
pcTaskName = (char *) pvParameters;

/* As per most tasks, this task is implemented in an infinite loop. */
for(;;)
{

/* Print out the name of this task. */

vPrintString (pcTaskName) ;

/* Delay for a period. This time a call to vTaskDelay() is used which places
the task into the Blocked state until the delay period has expired. The
parameter takes a time specified in ‘ticks’, and the pdMS_TO_TICKS () macro

is used (where the xDelay250ms constant is declared) to convert 250
milliseconds into an equivalent time in ticks. */

vTaskDelay (xDelay250ms) ;

Listing 23. The source code for the example task after the null loop delay has been
replaced by a call to vTaskDelay()

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

28 /31

Example: Sending tasks to blocked state

4 - When the delay expires the scheduler moves the

[2-Task1 prints out its string, then it toob tasks back into the ready state, where both execute

s cd enters the Blocked state by calling again before once again calling vTaskDelay() causing
g P vTaskDelay(). them to re-enter the Blocked state. Task 2 executes
first as it has the higher priority.

Task1 & Loom

T
k
k
k
k
k
k
k
k

Task 2 J -T

running

running

running

running Idl
running e
running
running HIY

running t1) t2 t3 T|me - \ tn

k

2
1
2
h |
2
1
2
1
2
i L
2
L
2
1
2
1

e i [e e e i [e e e e e e e

1- Task 2 has the highest priority so runs first. It [\
prints out its string then calls vTaskDelay() - and in so 3 - At this point both application tasks are in
doing enters the Blocked state, permitting the lower the Blocked state - so the Idle task runs.

priority Task 1 to execute.

Figure 16. The output produced when Example 4 is executed

Figure 17. The execution sequence when the tasks use vTaskDelay() in place of the
NULL loop

29/ 31

Key Terms in Real-time Systems

e Tasks - C functions which indicate things to do. Implemented as infinite loops.
e Scheduling - The process of determining what task is currently running

e Semaphores - an abstract data type which controls access to a resource used by
multiple tasks

e Queues - A way to communicate between tasks (Chapter 4 of Mastering FreeRTOS)

Interrupts and Events — how to safely integrate interrupts with the RTOS kernel
(Chapter 6 of Mastering FreeRTOS)

30/ 31

Summary

e Multitasking is an important concept in advanced embedded systems
= Have timing constraints that must be met (both soft and hard deadlines)

= Hard to debug and manage systems with increasing complexity while guaranteeing
all deadlines are met.

e Real-time operating systems introduce a scheduler which enables the programmer to
efficiently use - CPU cycles while ensuring deadlines are met.

e FreeRTOS is an open and accessible platform to learn RTOS concepts like tasks, queues,
semaphores, and resource management.

31/31

