
Direct Memory Access
Lecture 18

Josh Brake
Harvey Mudd College

1 / 27

Learning Objectives
By the end of this lecture you will be able to:

Explain what direct memory access is used for and how it works

Configure DMA on our MCU

2 / 27

Outline
What is Direct Memory Access?

How does DMA work on the MCU?

Activity

3 / 27

Recall STM32L432KC System Architecture

RM 0394 p. 64
4 / 27

Direct Memory Access
Used to provide high-speed data transfer between peripherals and memory without
CPU action

DMA controller connects to the AHB bus

The MCU has two DMA controllers with 7 channels each (total of 14 channels)

Each channel has a mux which enables various DMA request sources to be selected

5 / 27

DMA Block Diagram
4 modes

1. Peripheral-to-memory

2. Peripheral-to-peripheral

3. Memory-to-peripheral

4. Memory-to-memory

RM 0394 p. 300

6 / 27

Activity
The goal of this example project is to use the direct memory access (DMA) controller on
the MCU to enable automatic printing of data to the computer terminal via UART without
the need for processor intervention. We will be designing a system to meet the following
requirements.

Specifications

Print out a single character from a specified character array at a frequency of ~10 Hz
(one character every 100 milliseconds).

Use a UART baud rate of 9600.

Use update events from Timer 2 (TIM2) to trigger the DMA requests.

Use DMA Controller 1 (DMA1) to handle the direct memory transfers from the character
array to the UART peripheral.

7 / 27

Activity Steps and Hints
Work through worksheet.

A�er completing worksheet, create a new project and import demo source code.

8 / 27

DMA Channel Selection

RM0394 p. 297

9 / 27

DMA1 Request Mapping Mux Selects

RM0394 p. 298

10 / 27

DMA Channel Configuration Register

RM0394 p. 312

11 / 27

DMA Channel Selection Register

RM0394 p. 317

12 / 27

DMA Channel – Number of Data to Transfer Register

RM0394 p. 315

13 / 27

DMA Stream Peripheral Address Register

RM0394 p. 315

14 / 27

DMA Channel - Memory Address Register

RM0394 p. 316

15 / 27

Summary
DMA enables efficient and low-latency access between memory and peripherals

Need to configure DMA controller, then configure DMA requests from the peripheral
(timer, USART, SPI, etc.)

Use interrupts to handle and reset flags as necessary

16 / 27

DMA Worksheet

17 / 27

Learning Goals
The goal of this example project is to use the direct memory access (DMA) controller on
the MCU to enable automatic printing of data to the computer terminal via UART without
the need for processor intervention. We will be designing a system to meet the following
requirements.

18 / 27

Specifications
1. Print out a single character from a specified character array at a frequency of ~10 Hz

(one character every 100 milliseconds).

2. Use a UART baud rate of 9600.

3. Use update events from Timer 2 (TIM2) to trigger the DMA requests.

4. Use DMA Controller 1 (DMA1) to handle the direct memory transfers from the character
array to the UART peripheral.

19 / 27

Instructions
Answer the questions that follow.

In your answers, write down the field for each and the value it should be set to. Where
applicable, use CMSIS notation of <Peripheral>_<Register>_<Field> to
specify your answer.

For example, to configure PA2 as an output: GPIO_MODER_MODE2, 0b10.

20 / 27

Configure the DMA controller
1. Turn on the DMA controller in RCC. (Hint: Look in RCC registers).

2. Find the correct DMA channel that is triggered by update events from Timer 2 (TIM2).

DMA Channel 2 (RM 0394 p. 299, Table 41)

RCC->AHB1ENR |= (RCC_AHB1ENR_DMA1EN);1

21 / 27

3. Configure the DMA channel with the following settings.

Set the priority level to 2

Turn on memory address incrementing

Turn on circular addressing

Set the direction to be from memory to peripheral

_VAL2FLD(DMA_CCR_PL,0b10)1

_VAL2FLD(DMA_CCR_MINC, 0b1)1

_VAL2FLD(DMA_CCR_CIRC, 0b1)1

_VAL2FLD(DMA_CCR_DIR, 0b1)1

22 / 27

4. Set the DMA source memory address to be the address of the character array

5. Set the DMA data transfer length to be the length of the character array (set with
#define macro to be CHAR_ARRAY_SIZE)

6. Set the DMA destination memory address to be the address of the USART transmission
data register.

// Source: Address of the character array buffer in memory.1
DMA1_Channel2->CMAR = _VAL2FLD(DMA_CMAR_MA, (uint32_t) &CHAR_ARRAY);2

// Set DMA data transfer length (# of samples).1
DMA1_Channel2->CNDTR |= _VAL2FLD(DMA_CNDTR_NDT, CHAR_ARRAY_SIZE);2

// Dest.: USART data register1
DMA1_Channel2->CPAR = _VAL2FLD(DMA_CPAR_PA, (uint32_t) &(USART->TDR));2

23 / 27

7. Set the channel selection mux to the appropriate setting to select updates from TIM2.

8. Enable the DMA channel

// Select 4th option for mux to channel 21
DMA1_CSELR->CSELR |= _VAL2FLD(DMA_CSELR_C2S, 4);2

// Enable DMA1 channel.1
DMA1_Channel2->CCR |= DMA_CCR_EN;2

24 / 27

Configure Timer

25 / 27

Set up timer to run at 10 Hz
1. Set prescaler register to 0 (TIM_PSC_PSC).

2. Set ARR to SystemCoreClock/10 (SystemCoreClock stores the current bus clock
frequency in Hz).

TIM->PSC = 0x0000;1

TIM->ARR = SystemCoreClock/CHAR_PER_SECOND;1

26 / 27

Set up the timers to generate DMA requests when an
update event is triggered.
1. Configure DMA request to be generated when an update event is triggered instead of

when a capture compare event occurs (TIMx_CR2).

2. Enable DMA/Interrupt generation from update events (TIMx_DIER).

3. Enable the counter (TIMx_CR1).

// Enable trigger output on timer update events.1
TIM->CR2 |= (TIM_CR2_CCDS); // Set DMA request when update event occurs2

// Setup DMA request on update event for timer1
TIM->DIER |= (TIM_DIER_UDE);2

// Start the timer.1
TIM->CR1 |= (TIM_CR1_CEN);2

27 / 27

