

E155 Final Report
Anuragini Arora, Sam Freisem-Kirov

11/28/2020

Overview:
There are around 39,000,000 blind people around the world (World Health

Organization). We hope that our project, UltraVisionAid, will have a positive impact on

society by helping blind people with activities that require spatial awareness. If our
product makes it to production, our hope is that it will make life easier for these people

in a cost effective way. These goals influenced the way we approached designing and
creating the device. For instance, these goals dictated that our device had to be hand

held, battery powered, and relatively inexpensive.

The premise of UltraVisionAid is a spacial awareness aid for blind people that
uses auditory cues to help them understand the distance to the objects around them.

When the button is pressed, the device plays a tone based on the distance to the
nearest object in the direction that the device is pointed in. The tone dynamically

changes as the distance changes while the button is pressed.

Our product uses an ultrasonic distance sensor, a button, an amplifier, and an
AUX port. The STM32 microcontroller has the non-trivial functionality of sensing when

the button is pressed, sending a signal to the distance sensor, receiving the result, and
generating a squarewave based on it. And while the button is not being pressed the

device stays in sleep mode to save power.

Schematic:
The schematic below depicts all wired connections that will be incorporated for

the UltraVisionAid prototype. Pin A0, configured to alternate function for the

corresponding timer channel, provides the generated tone signal for the amplification by

the LM386, which is connected to the headphone jack that provides the same signal to
both the left and the right headphones. Pin A8 and Pin A9 communicate with the

ultrasonic ranging module, to transmit the trigger pulse on Pin A9 (configured with
output mode) and receive the echo pulse on Pin A8 (configured with input mode) . The

LM386 is set up for a gain of 20, and its circuit and pinouts were copied from the data

sheet.

Hardware Components:
The Ultrasonic Ranging Module (HC-SR04), referred to as the distance sensor in

this paper, has an ultrasonic transmitter and an ultrasonic receiver controlled by a circuit

that has four pins to communicate with the STM32. The two power pins must be

connected to a 5V supply voltage and GND, and the two pulse pins are a trigger input
and an echo output. Essentially, the module requires an input pulse of 10µs, signaling it

to transmit an 8-cycle trigger at 40kHz. It receives an echo that is translated (by the
internal circuit of the distance sensor) to an output pulse of a duration corresponding to

the distance from the sensor to an object. The HC-SR04 has a range from 2cm to 4m;

the distance may be calculated by multiplying the duration found by half of the speed of
sound. However, because the distance is information that is calculated internally by the

device and is not provided to the user, the code for the device directly translates the
duration from the distance sensor to a frequency for a generated tone.

The TRRS Breakout (BOB-11570), is essentially a female headphone jack. One

source suggested that the Tip, Ring, Ring, and Sleeve structure corresponds to the left
headphone, the right headphone, GND, and microphone respectively, with GND and

microphone reversed for different manufacturers (Cable Chick). Because the device
does not require a microphone and the audio should be the same for both ears, the tip

and its adjacent ring are connected to the same output and the sleeve and its adjacent

ring are connected to GND.
The Low Voltage Audio Power Amplifier (LM386) works in conjunction with the

female headphone jack to generate an audible audio output. The setup was based on a
circuit provided in the LM386 datasheet, which had a gain of 20.

The device implements a 10kΩ potentiometer to allow volume adjustment to the

amplified signal. Testing demonstrated that simply using a 10kΩ potentiometer setup
like in the circuit depicted in the LM386 datasheet would not allow sufficient volume

adjustment. Dramatic volume reductions occurred at one end of the potentiometer
spectrum, which was concluded to be ineffective. This end of the spectrum was

analyzed further by measuring voltages achieved at lower volumes to understand how a

voltage divider could be used to achieve the correct range. The voltage ranges found
indicated that an additional resistor should have a value between 200 and 2000 times

smaller than the value of the potentiometer. Thus, 47Ω and 4.7Ω resistors for voltage
deviders were chosen to satisfy the extremes of the condition for testing. The 47Ω

resistor did not have the distinct volume change upon turning the knob that the 4.7Ω
resistor produced. Thus, the 4.7Ω resistor was added to connect to ground to create a

voltage divider with the 10kΩ potentiometer for the final circuit.

The Nucleo development board consists of a button, which when used with an
interrupt, makes the device responsive, allowing the user to sense their surroundings

whenever desired, in either a continuous or an on-demand manner. In addition, the
STM32F401RE provides the device with the desired functionality. The device will be

used with a rechargeable battery pack to make it portable, allowing the user to sense

their surroundings wherever desired. The USB cable for the Nucleo development board
permits the connection for downloading programs from the computer to the

STM32F401RE and for receiving power from the rechargeable battery pack. Wires and
jumper cables, in addition to the breadboard, enabled the construction of the prototype

for the device.

Software Features:

Ultrasonic Distance Sensor Routine:

For the Ultrasonic Ranging Module (HC-SR04), a corresponding C library was

created, and it includes two functions, an initialization function and a data collection
function. The initialization function assigns the modes for the desired GPIO pins and

writes a 0 to the pin that provides the trigger. The data collection function writes a 1 to
the pin that provides the trigger and delays for ten microseconds, before writing another

0 to that pin. This is the ten microsecond trigger input pulse that communicates to the

Ultrasonic Ranging Module that it should transmit an ultrasound signal and receive an
echo. The data collection function waits until the pin measuring the echo is written high,

which cues it to start the timer to measure the duration of the echo pulse. The data
collection function waits until the pin measuring the echo is written low, and returns the

duration measured in microseconds. This function is called by the main function in a
while loop as long as the button is pressed. The value returned is converted to a

frequency directly with a simple linear equation to scale the pitch however desired. The

coefficients for the linear equation were selected through testing of the device, to ensure
a reasonable pitch range for the user.

Button Interrupt Routine:

The button interrupt protocol is incorporated in the main C library. The set up

function configures the flash memory and the clock and initializes USART. The button is
enabled and the corresponding pin is configured with input mode. The timer and the

ultrasonic distancing module are initialized, and the system configuration controller
clock domain is enabled. The external interrupt configuration register is set up for the

pin corresponding to the button. Interrupts are globally enabled, and the interrupt is

configured for the falling edge of the GPIO pin, specifically by enabling the relevant
trigger, configuring the mask bit, and turning on the relevant external interrupt in the

correct register for the nested vectored interrupt controller. There is an interrupt handler
function that ensures that the interrupt is caused by a button press.

Thus, the loop in the main function proceeds when the button is held to allow for

continuous detection. The button may be clicked (thus causing an interrupt) for
on-demand detection. The overall functionality that has been incorporated is simply that

the button pressed for whatever duration causes an interrupt and then enters a loop to
repeat data collection, if the button is still being pressed.

Tone Generation Routine:
When the device is powered, the tone is initially set up and plays a constant tone

for half a second to signify that the device is prepared for input. PWM is implemented to
generate the tones, and all tones use a 50% duty cycle. The tones are generated at

specified frequencies depending on the inputs to the tone function. In the button

interrupt handler, after completing the distance sensing routine, the PWM starts with a
50% duty cycle and a frequency calculated for the corresponding distance.

When the device returns to the main loop, while the button is still pressed, it
continues to update the PWM frequency, responding to the new data coming in from the

distance sensor. When the button is no longer being pressed, the tone function is called

to generate a 0Hz square wave, which essentially adjusts the PWM duty cycle to 0%.
The function call is a kind of stop command that prevents the previous tone from being

generated infinitely.
The tone frequency is calculated with the following equation:

enerated Frequency G =

ax Frequency (Hz) Sampled Duration (μs))M − (Max Duration (μs) − Min Duration (μs)
Max Frequency (Hz) − Min Frequency (Hz)

*

Through testing of pitches of tones generated, a maximum output frequency and a

minimum output frequency were selected to be comfortably audible to the user’s ears.

The distance sensor was tested to understand the ranges of microsecond durations
sent to the microcontroller after sensing the environment, which led to the selection of a

maximum duration and a minimum duration. The equation above is how we translate
the duration in microseconds to a frequency in Hertz linearly.

Low Power Mode Routine:

Since our device uses a rechargeable battery pack, and users prefer longer

battery life, the user would benefit from the device using less power and extending its
battery life on each charge. This feature was achieved by implementing a simple sleep

mode on the STM32 microcontroller. The sleep mode uses a WFI() to go to sleep and

wait for an interrupt to be generated for it to wake up. Testing found that without a sleep
mode implemented, while the button was not pressed, the device drew 30 mA of

current. With the sleep mode enabled, while the button was not pressed, the device
drew 10.85 mA of current. So this sleep mode routine appears to increase the battery

life by 3 times while the button is not being pressed. The button would not be pressed

for the majority of time in the use cases that were examined. With a 2600 mAh
rechargeable battery pack, the device would last 153 more hours with sleep mode

enabled.

Error Handling:
There exist two edge cases in which the ultrasonic distance sensor is unable to

make a measurement: (1) the distance is too far for the sensor to receive the echo
pulse in the sensor’s time limit, or (2) the sensor is blocked by an object that is too

close. The implemented edge case handling detects when one of these situations

occurs, but it cannot differentiate between them, due to the limitations of the distance
sensor. While considering the defined use cases, it appears that most of these errors

would occur in the first case, where the distance exceeds 4 meters, so the device
outputs a low tone. This tone is slightly lower than any in the output frequency range for

sensed distances, so a user would be able to notice that the sensor was not getting an

accurate reading because the distance was too far. In use cases that the sensor is
blocked by an object that is too close, the user would likely be able to detect this

distance themselves, so the generated low tone would not interfere with their
understanding of their environment.

Conclusion:
This device is a functioning prototype for a potentially marketable product with an

original and innovative idea. It has clear use cases for those who are visually impaired

and could viably be taken to market. Further development would be required to improve

its marketability. This includes increasing noise control and moving the design from a
prototype board to a custom PCB with a plastic case for easy handheld use. User

testing and further investigation of the effectiveness of the device in different
environments would also be beneficial. We hope that our prototype inspires production

of other similar devices that may have a greater impact on society.

Appendix A: main.c and main.h
// main.c

// Sam Freisem-Kirov Anuragini Arora

// sfreisemkirov@hmc.edu

// 11/5/20

#include​ ​"main.h"
#include​ ​"tone.h"

void​ ​setup​() {

 ​configureFlash​();
 ​configureClock​();

 ​initUSART​(USART_ID);

 ​// Enable LED as output
 ​RCC​->​AHB1ENR​.​GPIOAEN​ = ​1​;
 ​pinMode​(GPIOA, LED_PIN, GPIO_OUTPUT);

 ​// Enable button as input
 ​RCC​->​AHB1ENR​.​GPIOCEN​ = ​1​;
 ​pinMode​(GPIOC, BUTTON_PIN, GPIO_INPUT);

 ​// Initialize timer
 ​RCC​->​APB1ENR​ |= (​1​ << ​0​); ​// TIM2EN
 ​initTIM​(DELAY_TIM);

 ​// Initialize ultrasonic distance sensor
 ​initSensor​(INPIN,OUTPIN); ​//8,9

 ​// 1. Enable SYSCFG clock domain in RCC
 ​RCC​->​APB2ENR​ |= (​1​ << ​14​);
 ​// 2. Set EXTICR4 for PC13
 SYSCFG_EXTICR4 |= (​0b0010​ << ​4​​1​);

 ​// Enable interrupts globally
 ​__enable_irq​();

 ​// Configure interrupt for falling edge of GPIO PC13
 ​// 1. Configure mask bit
 ​EXTI​->​IMR​ |= (​1​ << BUTTON_PIN);

 ​// 2. Disable rising edge trigger
 ​EXTI​->​RTSR​ &= ~(​1​ << BUTTON_PIN);

 ​// 3. Enable falling edge trigger
 ​EXTI​->​FTSR​ |= (​1​ << BUTTON_PIN);

 ​// 4. Turn on EXTI interrupt in NVIC_ISER1
 *NVIC_ISER1 |= (​1​ << ​8​);

}

int​ ​main​(​void​) {
 ​setup​();
 ​tone​(​500​,​1000​);
 ​while​(​1​){
 ​delay_millis​(DELAY_TIM, ​200​);

 ​int​ count = ​0​;
 ​int​ ​prevDists​[​7​] = {​0​,​0​,​0​,​0​,​0​,​0​,​0​};
 ​int​ sum = ​0​;
 ​int​ i = ​0​;

 ​while​(!​digitalRead​(GPIOC, BUTTON_PIN)){
 ​int​ dist = ​getDistance​(INPIN, OUTPIN);
 sum -= ​prevDists​[i];
 ​prevDists​[i] = dist;
 i = (i+​1​) % ​7​;
 sum+= dist;

 ​if​ (count < ​7​) count++;
 ​int​ avgDist = sum/count;
 ​int​ freq = (​880.0​-(((​660.0​/​18000.0​)*avgDist)));

 ​tone​(freq,​60​);
 }

 ​tone​(​0​,​60​);
 ​// while button is being pressed
 ​// check distance
 ​// emit tone on that distance for a quarter of a second
 ​// when the button is not pressed, stop the tone

 ​__WFI​();

 }

}

void​ ​EXTI15_10_IRQHandler​(​void​){
 ​// Check that the button EXTI_13 was what triggered our interrupt
 ​if​ (​EXTI​->​PR​ & (​1​ << BUTTON_PIN)){
 ​// If so, clear the interrupt
 ​EXTI​->​PR​ |= (​1​ << BUTTON_PIN);

 ​int​ val = ​getDistance​(INPIN, OUTPIN);
 ​int​ dist = ​getDistance​(INPIN, OUTPIN);
 ​int​ freq = (​880.0​-(((​660.0​/​18000.0​)*dist)));
 ​tone​(freq,​60​);
 }

}

// Use For Testing

void​ ​printDist​(​int​ ​val​) {
 ​uint8_t​ ​msg​[​64​];

 ​sprintf​(msg, ​" %d ​\n\r​"​,val);

 ​uint8_t​ i = ​0​;
 ​do
 {

 ​sendChar​(USART_ID, ​msg​[i]);
 i += ​1​;
 } ​while​ (​msg​[i]);
}

// main.h

// Sam Freisem-KirovK, Anuragini Arora

// sfreisemkirov@hmc.edu

// 11/28/20

#ifndef​ MAIN_H
#define​ MAIN_H

//#include "stm32f4xx.h"

#include​ ​"STM32F401RE.h"
#include​ ​"HCSR04LIB.h"

#include​ ​<string.h>
#include​ ​<stdint.h>

///

// Custom defines

///

#define​ LED_PIN ​5
#define​ BUTTON_PIN ​13​ // PC13
#define​ DELAY_TIM TIM2
#define​ USART_ID USART2_ID
#define​ INPIN ​8
#define​ OUTPIN ​9

#define​ NVIC_ISER0 ((​uint32_t​ *) ​0xE000E100UL​)
#define​ NVIC_ISER1 ((​uint32_t​ *) ​0xE000E104UL​)
#define​ SYSCFG_EXTICR4 ((​uint32_t​ *) (​0x40013800UL​ ​+​ ​0x14UL​))

typedef​ ​struct​ {
 ​volatile​ ​uint32_t​ ​IMR​;
 ​volatile​ ​uint32_t​ ​EMR​;
 ​volatile​ ​uint32_t​ ​RTSR​;
 ​volatile​ ​uint32_t​ ​FTSR​;
 ​volatile​ ​uint32_t​ ​SWIER​;
 ​volatile​ ​uint32_t​ ​PR​;
}​EXTI_TypeDef​;

#define​ EXTI ((​EXTI_TypeDef​ *) ​0x40013C00UL​)

///

// IRQn_Type and __NVIC_PRIO_BITS from stm32f401xe.h

///

/**

 * ​@brief​ STM32F4XX Interrupt Number Definition, according to the selected device
 * in ​@ref​ Library_configuration_section
 */

typedef​ ​enum
{

/****** Cortex-M4 Processor Exceptions Numbers

**/

 ​NonMaskableInt_IRQn​ = -​14​,​ /*!< 2 Non Maskable Interrupt
*/

 ​MemoryManagement_IRQn​ = -​12​,​ /*!< 4 Cortex-M4 Memory Management
Interrupt */

 ​BusFault_IRQn​ = -​11​,​ /*!< 5 Cortex-M4 Bus Fault Interrupt
*/

 ​UsageFault_IRQn​ = -​10​,​ /*!< 6 Cortex-M4 Usage Fault Interrupt
*/

 ​SVCall_IRQn​ = -​5​,​ /*!< 11 Cortex-M4 SV Call Interrupt
*/

 ​DebugMonitor_IRQn​ = -​4​,​ /*!< 12 Cortex-M4 Debug Monitor Interrupt
*/

 ​PendSV_IRQn​ = -​2​,​ /*!< 14 Cortex-M4 Pend SV Interrupt
*/

 ​SysTick_IRQn​ = -​1​,​ /*!< 15 Cortex-M4 System Tick Interrupt
*/

/****** STM32 specific Interrupt Numbers

**/

 ​WWDG_IRQn​ = ​0​,​ /*!< Window WatchDog Interrupt
*/

 ​PVD_IRQn​ = ​1​,​ /*!< PVD through EXTI Line detection
Interrupt */

 ​TAMP_STAMP_IRQn​ = ​2​,​ /*!< Tamper and TimeStamp interrupts
through the EXTI line */

 ​RTC_WKUP_IRQn​ = ​3​,​ /*!< RTC Wakeup interrupt through the EXTI
line */

 ​FLASH_IRQn​ = ​4​,​ /*!< FLASH global Interrupt
*/

 ​RCC_IRQn​ = ​5​,​ /*!< RCC global Interrupt
*/

 ​EXTI0_IRQn​ = ​6​,​ /*!< EXTI Line0 Interrupt
*/

 ​EXTI1_IRQn​ = ​7​,​ /*!< EXTI Line1 Interrupt
*/

 ​EXTI2_IRQn​ = ​8​,​ /*!< EXTI Line2 Interrupt
*/

 ​EXTI3_IRQn​ = ​9​,​ /*!< EXTI Line3 Interrupt
*/

 ​EXTI4_IRQn​ = ​10​,​ /*!< EXTI Line4 Interrupt
*/

 ​DMA1_Stream0_IRQn​ = ​11​,​ /*!< DMA1 Stream 0 global Interrupt
*/

 ​DMA1_Stream1_IRQn​ = ​12​,​ /*!< DMA1 Stream 1 global Interrupt
*/

 ​DMA1_Stream2_IRQn​ = ​13​,​ /*!< DMA1 Stream 2 global Interrupt
*/

 ​DMA1_Stream3_IRQn​ = ​14​,​ /*!< DMA1 Stream 3 global Interrupt
*/

 ​DMA1_Stream4_IRQn​ = ​15​,​ /*!< DMA1 Stream 4 global Interrupt
*/

 ​DMA1_Stream5_IRQn​ = ​16​,​ /*!< DMA1 Stream 5 global Interrupt
*/

 ​DMA1_Stream6_IRQn​ = ​17​,​ /*!< DMA1 Stream 6 global Interrupt
*/

 ​ADC_IRQn​ = ​18​,​ /*!< ADC1, ADC2 and ADC3 global Interrupts
*/

 ​EXTI9_5_IRQn​ = ​23​,​ /*!< External Line[9:5] Interrupts
*/

 ​TIM1_BRK_TIM9_IRQn​ = ​24​,​ /*!< TIM1 Break interrupt and TIM9 global
interrupt */

 ​TIM1_UP_TIM10_IRQn​ = ​25​,​ /*!< TIM1 Update Interrupt and TIM10
global interrupt */

 ​TIM1_TRG_COM_TIM11_IRQn​ = ​26​,​ /*!< TIM1 Trigger and Commutation
Interrupt and TIM11 global interrupt */

 ​TIM1_CC_IRQn​ = ​27​,​ /*!< TIM1 Capture Compare Interrupt
*/

 ​TIM2_IRQn​ = ​28​,​ /*!< TIM2 global Interrupt
*/

 ​TIM3_IRQn​ = ​29​,​ /*!< TIM3 global Interrupt
*/

 ​TIM4_IRQn​ = ​30​,​ /*!< TIM4 global Interrupt
*/

 ​I2C1_EV_IRQn​ = ​31​,​ /*!< I2C1 Event Interrupt
*/

 ​I2C1_ER_IRQn​ = ​32​,​ /*!< I2C1 Error Interrupt
*/

 ​I2C2_EV_IRQn​ = ​33​,​ /*!< I2C2 Event Interrupt
*/

 ​I2C2_ER_IRQn​ = ​34​,​ /*!< I2C2 Error Interrupt
*/

 ​SPI1_IRQn​ = ​35​,​ /*!< SPI1 global Interrupt
*/

 ​SPI2_IRQn​ = ​36​,​ /*!< SPI2 global Interrupt
*/

 ​USART1_IRQn​ = ​37​,​ /*!< USART1 global Interrupt
*/

 ​USART2_IRQn​ = ​38​,​ /*!< USART2 global Interrupt
*/

 ​EXTI15_10_IRQn​ = ​40​,​ /*!< External Line[15:10] Interrupts
*/

 ​RTC_Alarm_IRQn​ = ​41​,​ /*!< RTC Alarm (A and B) through EXTI Line
Interrupt */

 ​OTG_FS_WKUP_IRQn​ = ​42​,​ /*!< USB OTG FS Wakeup through EXTI line
interrupt */

 ​DMA1_Stream7_IRQn​ = ​47​,​ /*!< DMA1 Stream7 Interrupt
*/

 ​SDIO_IRQn​ = ​49​,​ /*!< SDIO global Interrupt
*/

 ​TIM5_IRQn​ = ​50​,​ /*!< TIM5 global Interrupt
*/

 ​SPI3_IRQn​ = ​51​,​ /*!< SPI3 global Interrupt
*/

 ​DMA2_Stream0_IRQn​ = ​56​,​ /*!< DMA2 Stream 0 global Interrupt
*/

 ​DMA2_Stream1_IRQn​ = ​57​,​ /*!< DMA2 Stream 1 global Interrupt
*/

 ​DMA2_Stream2_IRQn​ = ​58​,​ /*!< DMA2 Stream 2 global Interrupt
*/

 ​DMA2_Stream3_IRQn​ = ​59​,​ /*!< DMA2 Stream 3 global Interrupt
*/

 ​DMA2_Stream4_IRQn​ = ​60​,​ /*!< DMA2 Stream 4 global Interrupt
*/

 ​OTG_FS_IRQn​ = ​67​,​ /*!< USB OTG FS global Interrupt
*/

 ​DMA2_Stream5_IRQn​ = ​68​,​ /*!< DMA2 Stream 5 global interrupt
*/

 ​DMA2_Stream6_IRQn​ = ​69​,​ /*!< DMA2 Stream 6 global interrupt
*/

 ​DMA2_Stream7_IRQn​ = ​70​,​ /*!< DMA2 Stream 7 global interrupt
*/

 ​USART6_IRQn​ = ​71​,​ /*!< USART6 global interrupt
*/

 ​I2C3_EV_IRQn​ = ​72​,​ /*!< I2C3 event interrupt
*/

 ​I2C3_ER_IRQn​ = ​73​,​ /*!< I2C3 error interrupt
*/

 ​FPU_IRQn​ = ​81​,​ /*!< FPU global interrupt
*/

 ​SPI4_IRQn​ = ​84​ ​/*!< SPI4 global Interrupt
*/

} ​IRQn_Type​;

#define​ __NVIC_PRIO_BITS ​4U​ /*!< STM32F4XX uses 4 Bits for the
Priority Levels */

#include​ ​"cmsis_gcc.h"
#include​ ​"core_cm4.h"

void​ ​setup​();

#endif​ // MAIN_H

Appendix B: tone.c and tone.h
// Standard library includes.

#include​ ​<stdint.h>
#include​ ​<stdlib.h>

#include​ ​"STM32F401RE.h"

void​ ​tone​(​int​ ​freq​, ​int​ ​delay​) {

 ​// PA0 connected to LM386
 ​// set mode to alt func
 ​pinMode​(​GPIOA​,​0​,​2​);

 ​// set alt func lower register to AF02 to match TIM5_CH1 output
 ​// GPIOA->AFRL.AFRL0 = 0b0010;
 ​GPIOA​->​AFRL​ &= ~(​0b11​ << ​2​); ​// 00 in bits 3:2
 ​GPIOA​->​AFRL​ |= (​0b1​ << ​1​); ​// 1 in bit 1
 ​GPIOA​->​AFRL​ &= ~(​0b1​ << ​0​); ​// 0 in bit 0

 ​int​ ​duty​ = ​50​; ​// sets duty cycle to constant 50%
 ​int​ ​arr​ = ​255​; ​// ARR configured for 8-bit resolution
 ​int​ ​psc​; ​// PSC with default value
 ​if​ (​freq​ > ​0​) { ​// if frequency given is greater than zero,
 ​psc​ = (​int​)((​84000000​/((​arr​+​1​)*​freq​))); ​// then calculates PSC using ARR
 } ​else​ {
 ​duty​ = ​0​; ​// otherwise, sets duty cycle to 0% for no tone
 ​psc​ = ​1​; ​// sets PSC to 1
 }

 ​configureTIM5​(​psc​,​arr​,​duty​); ​// configures TIM5 to produce tone at pitch given
by frequency

 ​delay_millis​(​TIM2​, ​delay​); ​// delays for given duration in milliseconds using
TIM2

 ​// configureTIM5(psc,arr,0);
}

void​ ​configureTIM5​(​int​ ​psc​, ​int​ ​arr​, ​int​ ​duty​) {

 ​// Disable slave mode
 ​// TIM5->SMCR.SMS = 0;
 ​TIM5​->​SMCR​ &= ~(​0b111​ << ​0​);

 ​// Enable timer

 ​// RCC->APB1ENR.TIM5EN = 1;
 ​RCC​->​APB1ENR​ |= (​0b1​ << ​3​);

 ​TIM5​->​PSC​ = ​psc​;
 ​TIM5​->​ARR​ = ​arr​;
 ​TIM5​->​CCR1​ = (​int​)((​arr​)*​duty​/​100​);

 ​// Select PWM mode 1 on channel 1
 ​// TIM5->CCMR1.OC1M = 0b110;
 ​TIM5​->​CCMR1​ |= (​0b11​ << ​5​);
 ​TIM5​->​CCMR1​ &= ~(​0b1​ << ​4​);

 ​// Enable preload register
 ​// TIM5->CCMR1.OC1PE = 1;
 ​TIM5​->​CCMR1​ |= (​0b1​ << ​3​);

 ​// Enable fast register
 ​// TIM5->CCMR1.OC1FE = 1;
 ​TIM5​->​CCMR1​ |= (​0b1​ << ​2​);

 ​// Enable auto-reload preload register
 ​// TIM5->CR1.ARPE = 1;
 ​TIM5​->​CR1​ |= (​0b1​ << ​7​);

 ​// Initialize registers
 ​// TIM5->EGR.UG = 1;
 ​TIM5​->​EGR​ |= (​0b1​ << ​0​);

 ​// Set OC1 polarity to active high
 ​// TIM5->CCER.CC1P = 0;
 ​TIM5​->​CCER​ &= ~(​0b1​ << ​1​);

 ​// Enable OC1 output
 ​// TIM5->CCER.CC1E = 1;
 ​TIM5​->​CCER​ |= (​0b1​ << ​0​);

 ​// Activate upcounting
 ​// TIM5->CR1.DIR = 0;
 ​TIM5​->​CR1​ &= ~(​0b1​ << ​4​);

 ​// Select CK_INT as counter clock source
 ​// TIM5->CR1.CEN = 1;
 ​TIM5​->​CR1​ |= (​0b1​ << ​0​);
}

// tone.h

// Sam Freisem-Kirov Anuragini Arora

// sfreisemkirov@hmc.edu

// 11/5/20

#ifndef​ TONE_H
#define​ TONE_H

void​ ​tone​(​int​ ​freq​, ​int​ ​delay​);
void​ ​configureTIM5​(​int​ ​psc​, ​int​ ​arr​, ​int​ ​duty​);

#endif​ // TONE_H

Appendix C: HCSR04LIB.c and HCSR04LIB.h
// HCSR04LIB.c

// Sam Freisem-Kirov Anuragini Arora

// sfreisemkirov@hmc.edu

// 11/7/20

#include​ ​"HCSR04LIB.h"

void​ ​initSensor​(​int​ ​inPin​, ​int​ ​outPin​) {
 ​// initialize the GPIO pins that we are using for the ultrasonic distance
sensor

 ​pinMode​(​GPIOA​,​inPin​,​GPIO_INPUT​);
 ​pinMode​(​GPIOA​, ​outPin​, ​GPIO_OUTPUT​);
 ​digitalWrite​(​GPIOA​, ​outPin​, ​GPIO_LOW​);
}

int​ ​getDistance​(​int​ ​inPin​, ​int​ ​outPin​) {
 ​// send a trigger pulse
 ​digitalWrite​(​GPIOA​, ​outPin​, ​GPIO_HIGH​);
 ​delay_micros​(​DELAY_TIM​, ​10​);
 ​digitalWrite​(​GPIOA​, ​outPin​, ​GPIO_LOW​);

 ​// read the output by setting a timer to count until the echo pulse is low
 ​while​(​digitalRead​(​GPIOA​, ​inPin​) == ​GPIO_LOW​);
 ​start_count​(​TIM2​);

 ​while​(​digitalRead​(​GPIOA​, ​inPin​) == ​GPIO_HIGH​);
 ​int​ ​count​ = ​get_count_micros​(​TIM2​);

 ​return​ ​count​;

}

// HCSR04LIB.h

// Sam Freisem-Kirov Anuragini Arora

// sfreisemkirov@hmc.edu

// 11/7/20

#ifndef​ HCSR04LIB_H

#define​ HCSR04LIB_H

#include​ ​"STM32F401RE.h"

#define​ DELAY_TIM TIM2

void​ ​initSensor​(​int​ ​inPin​, ​int​ ​outPin​);
int​ ​getDistance​(​int​ ​inPin​, ​int​ ​outPin​);

#endif

Appendix D: Additions to STM32F401RE_TIM.c
// STM32F401RE_TIM.c

// TIM functions

#include​ ​"STM32F401RE_TIM.h"
#include​ ​"STM32F401RE_RCC.h"

void​ ​initTIM​(​TIM_TypeDef​ * ​TIMx​){
 ​uint32_t​ ​psc_div​ = (​uint32_t​) ((​SystemCoreClock​/​1e6​)-​1​);

 ​// Set prescaler division factor
 ​TIMx​->​PSC​ = (​psc_div​ - ​1​);
 ​// Generate an update event to update prescaler value
 ​TIMx​->​EGR​ |= ​1​;
 ​// Enable counter
 ​TIMx​->​CR1​ |= ​1​; ​// Set CEN = 1
}

void​ ​delay_millis​(​TIM_TypeDef​ * ​TIMx​, ​uint32_t​ ​ms​){
 ​TIMx​->​ARR​ = ​ms​*​1000​;​// Set timer max count
 ​TIMx​->​EGR​ |= ​1​; ​// Force update
 ​TIMx​->​SR​ &= ~(​0x1​); ​// Clear UIF
 ​TIMx​->​CNT​ = ​0​; ​// Reset count

 ​while​(!(​TIMx​->​SR​ & ​1​)); ​// Wait for UIF to go high
}

void​ ​delay_micros​(​TIM_TypeDef​ * ​TIMx​, ​uint32_t​ ​us​){
 ​TIMx​->​ARR​ = ​us​;​// Set timer max count
 ​TIMx​->​EGR​ |= ​1​; ​// Force update
 ​TIMx​->​SR​ &= ~(​0x1​); ​// Clear UIF
 ​TIMx​->​CNT​ = ​0​; ​// Reset count

 ​while​(!(​TIMx​->​SR​ & ​1​)); ​// Wait for UIF to go high
}

void​ ​start_count​(​TIM_TypeDef​ * ​TIMx​) {
 ​TIMx​->​ARR​ = ​18000​;​// Set timer max count
 ​TIMx​->​EGR​ |= ​1​; ​// Force update
 ​TIMx​->​SR​ &= ~(​0x1​); ​// Clear UIF
 ​TIMx​->​CNT​ = ​0​; ​// Reset count
}

int​ ​get_count_micros​(​TIM_TypeDef​ * ​TIMx​) {
 ​if​(​TIMx​->​SR​ & ​1​) {
 ​return​ ​18000​;
 }

 ​return​ ​TIMx​->​CNT​;
}

Works Cited

Cable Chick, and www.cablechick.com.au. “Understanding TRRS and Audio Jacks.”
Cable Chick​, www.cablechick.com.au/blog/understanding-trrs-and-audio-jacks/.

Elec Freaks. “Ultrasonic Ranging Module HC - SR04.” ​Sparkfun​,
cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf.

“Global Data on Visual Impairment.” ​World Health Organization​, World Health
Organization, 8 Dec. 2017, www.who.int/blindness/publications/globaldata/en/.

“LM386 Low Voltage Audio Power Amplifier.” ​Texas Instruments​, May 2017.

Saddam. “Headphone/Audio Amplifier Circuit on PCB Using LM386.” ​Circuit Digest​, 5
Dec. 2017,
circuitdigest.com/electronic-circuits/headphone-amplifier-circuit-on-pcb.

“SparkFun TRRS 3.5mm Jack Breakout.” ​BOB-11570 - SparkFun Electronics​,
www.sparkfun.com/products/11570.

