Alien Voice Filter

Final Project Report
December 1, 2020

E155

Dithi Ganjam and Rebecca Qin

ABSTRACT

The goal of this project was to build a voice filter that would allow users to record a
snippet of their voice and play it back with three filters: one that increases the frequency of the
voice, one that decreases the speed of the voice, and one that modifies the frequency to make it
sound like an “alien” voice. The user interface for the voice filter is an online webpage. Our
device consists of a microphone, a microcontroller, a DAC, a speaker, and a WiFi module. The
user’s voice input into the microphone is sampled and stored in the microcontroller. The audio is
then modified and outputted to the DAC according to the user’s request. The output of the DAC

is then amplified and then sent to the speaker.

I. INTRODUCTION

Audio filters are entertaining features that are used all over social media nowadays. We
can see their functionality in apps like Snapchat, TikTok, etc. The motivation for this project was
to apply our knowledge of STM32F401RE functionality to recreate a voice-filtering web page of
our own. We sought out to design a webpage that allows the user to record their voice and play
the audio clip back with four main options: regular playback (no filter), slow playback, sped-up
playback, and an alien voice using amplitude modulation [1].

This project entails reading voice input from a microphone into memory on the
microcontroller using the ADC feature of the STM32F401RE, processing the audio input based
on user input implemented via an IoT interface, and outputting the modified audio signal to a
speaker to play it back. The block diagram in Figure 1 below outlines the general flow of the

system and the communication between the microcontroller and the various peripherals.

Web page user
interface ESP2866
USART
Communication
Anri-altasing filrer INgital Sigral with Folume coutrol
with i prrss Band '-:-'.:n-'c'rn:'e.' .';'l'.'nf." uxing imverfed op
gkt T . P - ’ g Filtered
N 4 ere
Voice— | MICROPHONE | ——— $TMI;‘JE;SUI-; RE DAC —— voice
Inpant ADC Conversion 5P

Communication

Figure 1. Top-level block diagram of our voice filter, which includes the STM32 interfacing

with various peripherals.

II. NEW HARDWARE

The project contains only one new piece of hardware, which is the CMA-4544PF-W
microphone. The microphone takes in an audio signal and outputs a voltage signal that can be
fed into the ADC to store the user’s voice data. While the microphone itself was the only new
piece of hardware implemented, it required extensive signal processing circuitry to generate an
intelligible voice signal from the microphone output. Before the output of the microphone was
sent into the ADC, it was first passed through an anti-aliasing filter with a cutoff frequency of 20
kHz (to capture the frequency range of voice) and to avoid aliasing in accordance with the
Shannon-Nyquist sampling theorem, as we sample at a rate of 40 kHz. It was then passed
through a differential amplifier to reduce the offset voltage and ensure that the integrity of the
signal was not compromised (or clipped on the top). The set-up of the input to the ADC,
including the details of the anti-aliasing filter and its circuitry, can be found in Section III. Once

the voice signal is sent into the ADC, it is converted into a digital signal and stored into memory.

CurT1= 80.000 ms CurV1 = 522.088 mvV P
CurT2 = -80.000 ms \
At = 160.000 ms AV =200803mV p
1/At = 6.250 Hz

1600 Samples at 10 kHz/100 ps Triggered
!

Figure 2. Example of microphone output of a scream (post analog processing)

ITII. SCHEMATICS

1kQ
3.3V

1mMQ

Input to STM32F401RE ADC

Figure 3. Butterworth Low Pass Filter (with cutoff Frequency 40kHz) and Differential
Amplifier circuit for amplification and offset (to avoid signal clipping)

The circuit in figure 3 demonstrates the analog filtration circuitry that was necessary to
convert the microphone output signal into an intelligible digital voice signal that could be stored
and recreated. The output of the microphone first passed through a low pass butterworth filter
with a cutoff frequency of 40kHz, and a band pass gain of 1001. The original voltage swing of
the microphone output was on the order of a few millivolts, so the band pass gain allowed for the
oscillation in the voice signal to be amplified to the extent that it could be accurately captured
and preserved as a voltage level (or digital signal). However, in order to ensure that the voltage
swing was large enough, the gain factor led to the signal being positively offset relative to
ground. Due to the large gain factor coupled with the offset, the signal was beginning to be
clipped on the top by the maximum read voltage of the ADC which is 3.6V. Therefore, the signal

is also filtered using a differential amplifier, which brings down the offset of the amplified signal

so that even with a 2 to 3V voltage swing, the input signal is not clipped by the maximum

voltage of ADC input.

ESP8266

V3 O—8-av3 4-EN —o 3V3

PASITX O— 7-BX 3-GPI02

PATOMRX O— 2-TX 1-GND

5-GPI100 6-RST —_

Figure 4. ESP8266 Circuit configuration for Serving the webpage

Figure 4 shows the schematic of the physical interface between the ESP8266 Wifi
module and the STM32F401RE microcontroller. The transmit pin, or TX, of the microcontroller
goes to the receive pin, or RX, of the ESP chip and vice versa enabling USART communication.
The chip enable is tied to 3.3V so that the wifi module knows to be able to receive and send data

to the microcontroller.

1 MCP4801 8
3.3V O—— VDD VouT

2 7
PAM o——CS VSS
SCK o— 3| scK SHDN |6
MoSsl o 4! spi LDAC |2

Figure 5. MCP4801 Circuit configuration between the DAC and the STM32F401RE

The figure above shows the interface between the digital to analog converter (DAC) and the
microcontroller. The input to SCK on the DAC is controlled by a timer in order to output the

signal at the appropriate frequency so the integrity of the signal is maintained. The chip select is

controlled by GPIOA pin 1, and the discrete voltage signal is sent to the MCP4801 from the

MOSI of the microcontroller to the serial data input of the DAC. The voltage swing of the output
of the DAC is approximately 2V, while for most 8§ Ohm speakers, a reasonably loud audio output
is around 8V. For this reason, the analog output of the MCP480, from pin 8, is fed through to the

audio amplification circuit outlined in figure 6 below.

5V

MCP4801 - — 4z L Tt \
PE | = _In Wk ;- Ol

Figure 6. Audio Amplification circuit using LM386
Lastly, a simple green LED was wired to GPIOA 8 and grounded to inform the user of

when the microcontroller was recording, and when it had stopped.

IV. MICROCONTROLLER DESIGN

The microcontroller design for handling the audio input is as follows. The audio input
from the microphone is retrieved using the built-in ADC in single-conversion mode. A timer
controls the sampling of the audio so that when the timer generates an interrupt, the ADC is
turned on and captures one data point of the audio signal. The flash memory of the
microcontroller is used to store the audio data. Specifically, sectors 6 and 7 are used in order to
avoid writing data to sectors that might be used for code [2]. Each of the two sectors used are
128 kbytes, resulting in a total of 256 kbytes, and a storage capacity of about 130,000 audio data
points, where each point is a 12-bit positive integer. We originally planned on using the DMA to
transfer data from the ADC data register to the flash memory, but after looking further into this,
we found that using DMA would not improve the efficiency of the data transfer and might even
decrease the efficiency, so we decided against implementing this feature.

Next, we outline the microcontroller design for outputting the audio. The SPI is
initialized to send the 12-bit data from the microcontroller to the DAC. Another timer is
initialized in a similar way as the sampling timer to output the audio data at the correct
frequency. The auto-reload register value for the timer initialized changes according to the audio
filter selected. For the alien filter, a function manipulates the audio data point dynamically, as it
is being outputted through the SPI. For the other playback options, the data point is unmodified
as it is sent through the SPI.

Finally, we outline the microcontroller design for rendering the webpage for the user
interface. Two USARTSs are initialized: one for communicating with the ESP8266 WiFi module,
and one for sending the data received from the ESP8266 to the serial monitor. To initialize the

ESP, the proper AT commands are sent using the ESP USART. Then, the webpage is rendered

by sending the HTML through the ESP USART when there is a request through the ESP’s IP
address. The serial monitor USART is used to check that the ESP is functioning and responding

to the commands.

V. RESULTS

The completed project was partially successful. Due to unforeseen issues with the
computer that the microcontroller was programmed with, the hardware malfunctioned. The
device was thus unable to gather an audio input from the microphone. Before the hardware
malfunction, each of the individual components of the high-level design was working separately
(1) the webpage controlling the recording and playback functionality, though not yet in flash
memory, and (2) writing to flash memory, and being able to apply the different voice filters,
though not yet controlled by the IoT interface. Before we could interface our two
implementations, unfortunately our hardware failed. However, we were successfully able to
design and implement our four voice filters. We were able to meet most of the requirements
outlined in our project proposal, but since essential hardware for our system broke, we are unable
to demonstrate a working voice filter.

The main challenge that we faced was with using the ESP8266 WiFi module along with
the flash memory. In the beginning, we attempted to use sectors 1-7 of flash memory. Upon
implementing this and running the code on the microcontroller, we discovered that the ESP had
stopped being functional. This may have been from our program in the flash memory being
overwritten by the audio values. Although we did not determine the reason for the ESP’s loss of
function, once we reprogrammed our code to use only sectors 6 and 7, a replacement ESP was
able to function correctly.

There is much room for improvement in our project design. Due to the lack of resources
from remote learning, we lost much time from needing to order small parts that needed to be
replaced. One stretch goal that we would have liked to implement is an additional autotuning

filter, which would require looking into fast Fourier transforms (FFTs) to modify the audio data.

VI. REFLECTION

Though we could not complete our project due to unforeseen hardware issues, working
through the project both together and remotely was an important learning experience. Overall,
we were not prepared in advance for our hardware to fail at any point (resulting in not having
extra components). In future projects, similar outcomes may be avoided by ordering extra
components in the event that anything goes wrong. Another example of such a hurdle is that our
only 1 out of 5 ESP8266 Wifi modules was functioning appropriately. Initially, when the
ESP8266 chips were not functioning as expected, we experimented with an external power
supply for increased reliability, and a variety of baud rates. However, later upon plugging it into
the logic analyzer on the SCOPY digital oscilloscope, we realized that the ESP was not
communicating in response to the microcontroller, as we could only see bits communicated from
the TX pin of the microcontroller, and none received on the RX pin. However, for the 5th
ESP8266 that we tried, we were able to observe communication between the ESP and the
microcontroller, and also serve the webpage for our IoT interface. While the project itself was
incomplete as new hardware could not be ordered in time before the final due date, working
through our software issues allowed us to better understand the inner workings of flash memory
on STM32F401RE microcontroller. Though we encountered issues along the way, the project
taught us the importance of debugging and understanding how different components interact
with one another (for example, how the ESP8266 stores information in certain flash sectors). It
was also a lesson learned on the volatility and fragility of electrical components. While we could
not pinpoint exactly what caused our hardware to fail, we suspect it occured when the computer
we were working on began to glitch and eventually crashed, also impacting the monitor and

mouse, after which our hardware also began to fail.

VII. REFERENCES

1. Bezzam, Eric. “3.1 How It Works.” DSP Labs, 2018,
Icav.gitbook.io/dsp-labs/alien-voice/effect description.

2. Biswal, Sanskar. “Programming FLASH ROM in STM32.” Medium,
TheTeamMavericks, 25 May 2020,

medium.com/theteammavericks/programming-flash-rom-in-stm32-f5b7d6dcba4f.

VIII. PARTS LIST

The table below lists the parts that were used for this project.

Part Sources Vendor Part # Price
CMA-4544PF-W Digi-Key 102-1721-ND $0.77
Microphone
LM386 Audio Texas Instruments 4/NOPB $1.17
Amplifier
AS358P Spark Fun 945JB2 $0.95
ESP8266 WiFi Spark Fun WRL-13678 $6.95
Module
Speaker 0.5W 8 ohm Adafruit 1891 $1.75
Breadboard Power Inland 078584 $3.99
Supply Module

IX. APPENDIX

Microcontroller Code

"STM32F401RE.h"
"main.h"
<string.h>
<math.h>

"UARTRingBuffer.h"

count = 0;
size t NUM SAMPLES = 130000;
recording = 0;

play index = 0;

uintl6 t *FLASH SECTOR 6 ADDRESS = (uintl6 t *)

TYPE = 2

uintl6 t arr for sampling = 2100;
initADCTIM (

->EGR |= 1;

->ARR = arr for sampling;

->DIER |= 0Obl;
(TIM2 IROnN) ;

initPlayTIM(uintl6 t arr) {

0x08040000;

->EGR
->DIER O0bl;
—->ARR arr;
(TIM4 IROn);

initESP8266 (USART TypeDef * ESP USART, USART TypeDef * TERM USART) {
uint8 t str(I="";

sendString (ESP_USART, "ATEl\r\n");
delay millis(,
readString (ESP _USART, str);

delay millis(,
sendString (TERM USART, str);

delay millis(

sendString (ESP_USART, "AT+CWMODE=3\r\n");
delay millis(7) 2
readString (ESP_USART, str);

delay millis(,) 2
SendString(TERMiUSART, str) ;

delay millis ()7

sendString (ESP_USART, "AT+CIPMUX=1\r\n");

delay millis(,) 2
readString (ESP _USART, str);
delay millis(');
sendString (TERM USART, str);
delay millis() ;

sendString (ESP_USART, "AT+CIPSERVER=1,80\r\n");
delay millis(');

readString (ESP _USART, str);
delay millis(,
sendString (TERM USART, str);
delay millis(

uint8 t connect cmd[128] = "";

sprintf (connect cmd, "AT+CWJAP=\"%s\",\"%s\"\r\n",

sendString (ESP USART, connect cmd);
delay millis(');
readString (ESP_USART, str);

delay millis(0) ;
sendString (TERM USART, str);

delay millis () 7

delay millis(

sendString (ESP_USART, "AT+CIFSR\r\n");

delay millis(0) ;
readString (ESP _USART, str);
delay millis(; Do
sendString (TERM USART, str);

serveWebpage (uint8 t str) |
USART TypeDef * ESP USART = id2Port (
USART TypeDef * TERM USART = id2Port (

uint8 t cmd response]| 1 = "W

uint32 t str length = strlen(str)+2;

memset (cmd response, 0,

sendString (TERM USART, "Serving:
sendString (TERM USART, str);
sendString (TERM USART, "\r\n");

memset (cmd response, 0,) &

uint8 t cmd[| = g

sprintf (cmd, "AT+CIPSEND=0,%d\r\n",str length);
sendString (ESP USART, cmd);

delay millis(0) ;
readString (ESP_USART, cmd response);
sendString (TERM USART, cmd response);

memset (cmd response, 0,) &

sendString (ESP USART, str);
sendString (ESP_USART, "\r\n");

delay millis(0) ;
readString (ESP_USART, cmd response);
sendString (TERM USART, cmd response);

play(type,
TYPE = type;
initPlayTIM (arr) ;

TIM4 IRQHandler (

->SR &= ~(0bl) ;
if (play index == NUM SAMPLES) play index = 0;

uintl6é t note = * (FLASH SECTOR 6 ADDRESS + play index);

if (TYPE ==)
note = (uintl6 _t) (() (note * (((
sin (2*3.14*(900/40000) *play index)+1))));
}

spiSendReceivel?2 (note) ;

++play index;

EXTI15 10 IRQHandler () {
if ->PR & (1 <<

->PR |= (1 <<
if (recording) {
->CR1 &= ~(0bl);
->CR2.ADON = 0;
digitalWrite (7
recording = 0;
}
else {
initFLASH () ;
count = 0;
initADCTIM() ;
digitalWrite

(
recording = 1;

TIM2 IRQHandler (

->SR &= ~ (0bl) ;
if (count < NUM SAMPLES) {
configureADC () ;

->CR1 &= ~(0bl);
->CR2 .ADON =
digitalWrite

(
recording = 0;

ADC TIRQHandler () {
->SR &= ~ (0bl0) ;

* (FLASH_SECTOR_6 ADDRESS + count) = (uintl6 t)
while (->SR.BSY == 1);

++count;

USART1 IRQHandler () {
USARTiTypeDef 2 ESPiUSART = 1d2Port (
usart ISR(ESP USART);

configureFlash () ;

configureClock() ;

->AHB1ENR.GPIOAEN
->AHB1ENR.GPIOCEN

->APB2ENR.ADCI1EN =
->APB2ENR.SYSCFGEN
->APB2ENR.SPI1EN =

—>APB1ENR.TIM2EN
—->APB1ENR.TIM3EN
—>APB1ENR.TIM4EN
->APB1ENR.TIMSEN
initDelayTIM (
initDelayTIM () 2

__enable irqg();

|= 0b00100000;

->IMR |= 1 << 13;

->RTSR &= ~ (1 << 13);

->FTSR |= 1 << 13;
__NVIC EnableIRQ(EXTI15 10 IRQn);
__NVIC EnableIRQ(ADC IROnN) ;

USART TypeDef * ESP USART = initUSART (, 115200) ;
USART TypeDef * TERM USART = initUSART (, 115200) ;

* I= (1 << 5)7;
ESP USART->CR1.RXNEIE = 1;

init ring buffer();
flush buffer();

delay millis(, 1000);
initESP8266 (ESP _USART, TERM USART) ;
delay millis(; 500) ¢

uint8 t http request|

uint8 t temp str|

while (1) {

memset (http request, 0,) &

uint32 t http req len = 0;

if (is_data available()) {
do{
memset (temp str, O,) &
readString (ESP_USART, temp str);
strcat (http request, temp str);

http req len = strlen(http request);

delay millis (; 20) ¢

} while(is data available());

sendString (TERM USART, http request);

uint8 t get request = look for substring("GET",

if (get request == 1) {

uint8 t button req = look for substring ("REQ"
http request);
uint8 t favicon req =

look for substring("favicon", http request);

if (!favicon req) {

button req type

button req type

button req type

if (button req == 1) {

uint8 t button req type;

if (look for substring("=PLAY",

’

else if (look for substring ("=SLOW", http request))

Il

else if(look for substring("=FAST", http request))

’

http request))

else if (look for substring("=ALIEN",

http request)) button req type = 3

slowed down.\n");

switch (button req type) {
case

play(,)i
sendString (TERM USART,

break;
case

play (’)
sendString (TERMiUSART o

break;
case

play (’)i
sendString (TERM USART,

break;
case

play(

"Playing back

"Playing voice

"Playing voice

sendString (TERM USART, "Playing

break;

case REQ UNKNOWN:

sendString (TERM USART, "Unknown

serveWebpage ("<!DOCTYPE html>") ;

serveWebpage ("<meta name=\"viewport\"
content=\"width=device-width, initial-scale=1.0\">");

serveWebpage ("<title>Alien Voice Filter</title>");

serveWebpage ("<h3 style=\"color:Green; \">~~ALiEn vOicEk
FiLteR~~</h3>");

serveWebpage ("<p
style=\"color:RebeccaPurple; \">Welcome to the spooky alien voice
filter!</p>");

serveWebpage ("<p style=\"color:Chartreuse; \">Press the
blue button on the microcontroller to start recording your voice. Press
the button again to stop. The recording will automatically stop after a
set amount of time.</p>");

serveWebpage ("<p
style=\"color:MediumSlateBlue; \">After you record, press one of the
buttons below to play your filtered voice back.</p>");

serveWebpage ("<form action=\"REQ=PLAY\"
style=\"background-color:SpringGreen; \"><input type=\"submit\" value =
\"Playback\"></form>") ;

serveWebpage ("<form action=\"REQ=SLOW\"
style=\"background-color:Indigo; \"><input type=\"submit\" value = \"Slow
Down\"></form>") ;

serveWebpage ("<form action=\"REQ=FAST\"
style=\"background-color:LimeGreen; \"><input type=\"submit\" value =
\"Speed Up\"></form>") ;

serveWebpage ("<form action=\"REQ=ALIEN\"
style=\"background-color:DarkViolet; \"><input type=\"submit\" value =
\"Alien Voice\"></form>") ;

}

memset (temp str, O,) ;

sendString (ESP_USART, "AT+CIPCLOSE=0\r\n");
readString (ESP_USART, temp str);

sendString (TERM USART, temp str);

"STM32F401RE.h"

"Fios-QS9zf"
"yes753code39jab"

uint32 t 0xE000E100UL
uint32_t 0xE000E104UL
uint32 t 0x40013800UL + 0x14UL

IMR;

EMR;

RTSR;

FTSR;

SWIER;

PR;
}EXTI TypeDef;

#define EXTI TypeDef 0x40013C00UL

#define
#define
#define
#define
#define

NonMaskableInt IROn

MemoryManagement TROn

BusFault IRQOn

UsageFault IROn

SVCall IRQOn

DebugMonitor IRQn

PendSV_IRQOn

SysTick IRQn

WWDG_IRQOn

PVD_ IRQn

TAMP STAMP IROn

RTC_WKUP IRQn

FLASH TROn

RCC_IRQn

EXTIO IRQOn

EXTI1 IRQOn

EXTI2 IROn

EXTI3 IROn

EXTI4 IROn

DMAl StreamO IRQn

DMA1l Streaml IRQn

DMAl StreamZ IRQn

DMA1l Stream3 IROn

DMA1l Stream4 IRQn

DMA1l Stream5 IROn

DMA1l Stream6 IROn

ADC_IRQn

EXTI9 5 IRQn

TIM1 BRK TIM9 IROn

TIM1 UP TIM10 IRQn

TIM1 TRG COM TIM1l IRQn

TIM1 CC IRQn

TIM2 IRQn

TIM3 IRQn

TIM4 IRQn

I2C1_EV_IRQn

I2C1_ER IRQn

I2C2_EV_IRQn

I2C2_ER_IRQn

SPI1 IRQn

SPI2_IRQn

USART1 IRQn

USART2 IRQn

EXTI15 10 IRQOn

RTC Alarm IRQOn

OTG_FS_WKUP_IRQn

DMA1l Stream’/ IROn

SDIO_IRQn

TIM5 IRQn

SPI3_ IRQn

DMAZ StreamO IROn

DMA2 Streaml IRQn

DMAZ StreamZ IRQn

DMA2 Stream3 IRQn

DMAZ Stream4 IROn

OTG_FS_IRQOn

DMA2 Stream5 IRQn

DMAZ Stream6 IROn

DMAZ2 Stream?7 IRQn

USART6_IRQn

I2C3_EV_IRQn

I2C3_ER IRQn

FPU_ IRQOn

SPI4 IRQn

} IROn Type;

#define

#include "cmsis gcc.h"

#include "core cm4.h"

#include "STM32F401RE FLASH.h"

configureFlash () {
->ACR.LATENCY = 2;
->ACR.PRFTEN = 1;

clearFlash () {

while (->SR.BSY== 1) ;
->CR.SNB = 0b0110;
->CR.SER = 1;
->CR.STRT = 1;

while (->SR.BSY== 1) ;
->CR.SNB = 0b0111;
->CR.SER = 1;
->CR.STRT = 1;

while (->SR.BSY== 1) ;

initFLASH() {
->KEYR = 0x45670123;
->KEYR = O0xCDEF89ARB;
->0OPTKEYR = 0x08192A3B;
->0OPTKEYR = 0x4C5D6ETF;
->CR.PSIZE = 0bO01;
->0OPTCR.RDP = 0Oxaa;
—->0OPTCR.nWRP = 0b11111110;
->0OPTCR.SPRMOD = O0;
clearFlash () ;
->CR.PG = 1;

#define

#include <stdint.h>

} ACR b

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

its;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t

LATENCY

PRETEN
ICEN
DCEN
ICRST
DCRST

EOP
OPERR

WRPERR
PGAERR
PGPERR
PGSERR

uint32 t RDERR

uint32 t

uint32_t BSY

uint32 t

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t LOCK

} FLASH SR bits;

{

} FLASH CR bits;

{

EOPIE
ERRIE

uint32 t OPTLOCK
uint327t OPTSTRT

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t
uint32 t

BOR_LEV

WDG_SW
nRSTSTOP
nRSTSTDBY
RDP

NWRP

uint32 t SPRMOD

{

} FLASH OPTCR bits;

ACR bits ACR;

~. ~. ~. ~. ~.

~.

~. ~. ~e ~e ~e

S L N L e N N B N N T e
<o

~.

uint32 t KEYR;

uint32 t OPTKEYR;

FLASH SR bits SR;

FLASH CR bits CR;

FLASH OPTCR bits OPTCR;

uint32 t OPTCRI1;

} FLASH TypeDef;

#define FLASH TypeDef

configureFlash () ;

clearFlash () ;

initFLASH() ;
fendif

#include "STM32F401RE TIM.h"

#include "STM32F401RE RCC.h"

initDelayTIM(TIM TypeDef * TIMx) {

uint32 t psc div = (uint32 t) ((SystemCoreClock/le6)-1);

TIMx->PSC = (psc _div - 1);
TIMx->EGR |= 1;
TIMx->CR1 |= 1;
delay millis (TIM TypeDef * TIMx, uint32 t ms) {
TIMx->ARR = ms*1000;
TIMx->EGR |= 1;
TIMxX->SR &= ~ (0x1);

TIMx->CNT = 0;

while (! (TIMx->SR & 1)) ;

delay micros (TIM TypeDef * TIMx, uint32 t us) {

TIMx->ARR =
TIMx->EGR |
TIMxX->SR &= ~ (0x1);
TIMx->CNT = 0;

while (! (TIMx->SR & 1))

#include <stdint.h>

#include "STM32F401RE GPIO.h"

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

0x40000000UL

uint32 t CCMRI1;

uint32 t CCMR2;

uint32 t CCER;

uint32 t CNT;

uint32 t PSC;

uint32 t ARR;

uint32 t RCR;

uint32 t CCRI1;

uint32 t CCRZ;

uint32 t CCR3;

uint32 t CCR4;
uint32 t BDTR;
uint32 t DCR;
uint32 t DMAR;
uint32 t OR;
} TIM TypeDef;
TIM TypeDef
TIM TypeDef
TIM TypeDef
TIM TypeDef
TIM TypeDef

TIM TypeDef
TIM TypeDef

TIM TypeDef

initDelayTIM(TIM TypeDef TIMX) ;
delay millis (TIM TypeDef TIMx, uint32 t ms);

delay micros (TIM TypeDef TIMx, uint32 t us);

#endif

#include "STM32F401RE RCC.h"

configurePLL () |

->CR.PLLON = 0;
while (—->CR.PLLRDY

->PLLCFGR.PLLSRC
->PLLCFGR.PLLM =
->PLLCFGR.PLLN
->PLLCFGR.PLLP
->PLLCFGR.PLLO =

->CR.PLLON =
while (—->CR.PLLRDY == 0) ;

configureClock () {

->CFGR.PPRE?2
->CFGR.PPRE1

->CR.HSEBYP = 1;
->CR.HSEON = 1;
while (! —->CR.HSERDY) ;

configurePLL () ;

->CFGR.SW = ;
while (->CFGR.SWS != 0blO0);

SystemCoreClock = 84000000;

#include <stdint.h>

uint32 t SystemCoreClock;
8000000

} CR bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t
uint32 t

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

HSION
HSIRDY

HSITRIM
HSICAL
HSEON
HSERDY
HSEBYP
CSSON

PLLON
PLLRDY
PLLI2SON
PLLI2SRDY

~. ~e ~e ~. ~e ~.

~e

~. ~. ~. ~e ~e ~e

N e e e = T S S S e o o B B S S

~.

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} PLLCFGR bits;

} CFGR bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

{
uint32 t
uint32 t

uint32 t
uint32 t

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

PLLSRC

PLLO

PPRE1
PPRE?2
RTCPRE
MCO1
I2SSCR
MCO1PRE
MCO2PRE
MCO2

GPIOAEN
GPIOBEN
GPIOCEN
GPIODEN
GPIOEEN

GPIOHEN

~. ~. ~e

~.

~. ~. ~.

I N e e S A O B Ve e)
~.

~.

~. ~e ~e ~.

~.

~. ~e ~. ~.

& S I N N N N T e

~.

uint32 t
uint32 t
uint32 t

} AHBLENR bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} APBI1ENR bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

DMA1EN
DMAZ2EN

TIM2EN
TIM3EN
TIM4EN
TIMSEN

WWDGEN

SPIZ2EN
SPI3EN

USART2EN

I2C1EN

I2C2EN
I2C3EN

TIM1EN

USARTI1EN
USART6EN

ADCI1EN

SDIOEN

SPI1EN

SPI4EN

SYSCEFGEN

TIMOEN

~. ~e ~. ~. ~. ~. ~. ~.

~e

~. ~. ~. ~e ~e ~.

~.

1
1
1
1
7
1
2
1
1
1;
1
3
1
1
1
4
1
3

~.

~. ~e ~. ~e ~e

~.

~. ~e ~. ~. ~.

R e e ST S N R S S S O R =
~.

~.

uint32 t TIM10EN
uint32 t TIMI1EN
uint32 t
} APB2ENR bits;
CR bits CR;
PLLCFGR bits PLLCFGR;
CFGR bits CFGR;
uint32 t CIR;
uint32 t AHBI1RSTR;

uint32 t AHB2RSTR;

uint32 t AHB3RSTR;

uint32 t RESERVEDO;

uint32 t APBIRSTR;

uint32 t APB2RSTR;

uint32 t RESERVED1 [2] ;

AHB1ENR bits AHBLENR;

uint32 t AHB2ENR;

uint32 t AHB3ENR;

uint32 t RESERVED2Z;

APB1ENR bits APBLENR;

APB2ENR bits APBZENR;

uint32 t RESERVED3[2] ;

uint32 t AHB1LPENR;

uint32 t AHB2LPENR;

uint32 t AHB3LPENR;

uint32 t RESERVED4;

uint32 t APBI1LPENR;

uint32 t APB2LPENR;

uint32 t RESERVEDS5[2] ;

uint32 t BDCR;

uint32 t CSR;

uint32 t RESERVEDG6[2] ;

uint32 t SSCGR;

uint32 t PLLI2SCFGR;

uint32 t RESERVED7[1];

uint32 t DCKCFGR;

RCC TypeDef;

#define RCC TypeDef

configurePLL () ;

configureClock() ;

#endif
#include "STM32F4OIRE7ADC.h"

configureADC () {

->CR2.ADON = 1;

->SQR1 |= (0b0000 << 20);

->SQR3 |= 0b0000O0;

->CR2.CONT = O;

EOCIE = 1;

EOCS = 1;

SWSTART =

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} ADC CR1 bits;

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

{

{

AWDCH
EOCIE
AWDIE
JEOCIE
SCAN
AWDSGL
JAUTO
DISCEN
JDISCEN
DISC_NUM

JAWDEN
AWDEN
RES
OVRIE

DMA
DDS
EOCS
ALIGN

~. ~e ~. ~. ~. ~. ~.

~.

~. ~. ~. ~e ~. ~.

& T N B e o T S T S e S e e e N i C

~.

~. ~e ~e ~. ~e ~. ~.

N e e e N

~.

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

JEXTSEL
JEXTEN
JSWSTART

EXTSEL
EXTEN
SWSTART

~. ~.

~.

~. ~. ~.

R PN RN D
~.

~.

} ADC CR2 bits;

{
uint32 t DR : 16;
uint32 t : 16;
} ADC DR bits;

uint32 t

{
SIRY

ADC_CR1 bits CR1;

ADC CR2 bits CR2;

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

SMPR1;

SMPR2;

JOFR1;

JOFR2;

JOFR3;

JOFR4;

HTR;

LTR;

uint32 t SOQRI;

uint32 t SQR2;

uint32 t SQR3;

uint32 t JSQOR;

uint32 t JDRI;

uint32 t JDRZ;

uint32 t JDR3;

uint32 t JDR4;

ADC DR bits DR;

} ADC TypeDef;

#define ADC TypeDef

configureADC () ;

#endif

#include "STMBZFK}OIREisPI.h"
#include "STM32F4OIRE_RCC.h"
#include "STM32F401RE GPIO.h"

spilInit (uint32 t br, uint32 t cpol, uint32 t cpha) {

->AHB1ENR.GPIOAEN = 1;

->APB2ENR.SPI1EN = 1;

.BR =

.CPOL cpol;
.CPHA cpha;
.LSBFIRST = 0;
.DFF 1z

.SSM = 0;

. SSOE

.MSTR

->CR1.SPE = 1;

uintl6 t spiSendReceivel6 (uintl6 t send)
digitalWrite (; 6, 0)¢
->CR1.SPE = 1;
->DR.DR = send;

while (! (->SR.RXNE)) ;
uintl6 t rec = ->DR.DR;

->CR1.SPE = 0O;
digitalWrite (

return rec;

uintl6 t spiSendReceivel2 (uintl6 t send)
while (->SR.TXE != 0bl) {}

digitalWrite (
->CR1.SPE

uintl6 t modified send = (0b0001 << 12) | (send & OxFFF);
->DR.DR = modified send;

while (! (->SR.RXNE)) ;
uintl6 t rec = ->DR.DR;

->CR1.SPE =
digitalWrite (

return rec;

#include <stdint.h>

{
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} SPI _CR1 bits;

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} SPI CR2 bits;

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

LSBFIRST
SSI

SSM
RXONLY
DEF'F
CRCNEXT
CRCEN
BIDIOE
BIDIMODE

{
RXDMAEN

TXDMAEN
SSOE

FRF
ERRIE
RXNEIE
TXEIE

{
RXNE
TXE
CHSIDE
UDR
CRCERR
MODF
OVR
BSY
FRE
DEF'F
CRCNEXT
CRCEN
BIDIOE
BIDIMODE

~. ~e ~. ~.

~.

~. ~. ~.

e e e e

(e)}

~.

~. ~. ~.

~.

~. ~.

~.

1
1
1
1
1;
1
1
1
2

o~

~.

~. ~. ~. ~. ~. ~.

~.

~. ~e ~e ~. ~. ~.

R R R R e e e e e
0

o)

~.

} SPI SR bits;

{
uint32 £t DR : 16;
uint32 t s 16Gg
} SPI DR bits;

{
SPI CR1 bits CR1;

SPI_CR2 bits CR2;

SPI SR bits SR;

SPI DR bits DR;

uint32 t CRCPR;

uint32 t RXCRCR;

uint32 t TXCRCR;

uint32 t I2SCFGR;

uint32 t I2SPR;

} SPI TypeDef;

SPI TypeDef

spilnit (uint32 t clkdivide, uint32 t cpol, uint

uintl spiSendReceivel6 (uintl6 t send);

t spiSendReceivel2 (uintl6 t send);

#endif

*We did not include USART, or GPIO libraries as they were not modified at all from the ones given to us in the course.

