
Project Report
Marz Barnes, Max Castro

Abstract
A microprocessor based system was designed by the team to track the current and maximum
occupancy of a room. The system is intended to simplify managing more restrictive capacity
constraints imposed by the COVID-19 pandemic. The delivered system counts people as they
enter and exit through a single doorway with reasonable accuracy, displays the current
estimated and maximum occupancy, and allows the user to manually make changes to adjust
for errors or to adjust the maximum occupancy.

Introduction

Motivation
Managing capacity in a room is more important than ever now. Instead of having to staff
someone to count everyone that walks in and out, we have devised a system that counts people
as they enter and leave through the same doorway, eliminating the need to have a person
staffed to manually count attendees.

Block Diagram

Overview
The system uses two passive infrared (PIR) motion sensors to determine whether a person is
entering or exiting, as shown in Figure 1. Depending on whether the person is entering or
exiting, one of the two sensors will fire first.

The MCU keeps track of the number of people that are inside the room and displays the current
count on an LCD matrix. The user may use an infrared (IR) remote to manually adjust values if
needed. Additionally, the user may set the maximum occupancy, and the LED matrix will
indicate when capacity has been reached. The user may also use a website powered by an
ESP8266 wi-fi module to view and edit the current occupancy and maximum occupancy.

New Hardware

PIR Sensors
Passive infrared sensors sense motion by detecting infrared radiation from body heat. The
output of the sensor changes as the amount of infrared light it detects changes. We used two
Panasonic EKMC2601111K sensors. These sensors have just three pins: 3.3V input, GND, and
an analog output pin [1]. Example output from the datasheet is shown in below:

The MCU uses its ADC to detect the voltage level output by the two PIR sensors. When the
voltage exceeds a certain value, the MCU interprets this as motion being detected.

Our testing found that a person walking by the PIR sensor would always cause the sensor to rail
out several times in both directions and that it would take several seconds for the sensor output
to return to its default value. To make it easier for the MCU to detect a person and to reduce the
amount of time needed for the sensor to return to its original value, we covered most of the
surface of the PIR sensors to restrict the amount of infrared light detected. With the coverings,
when a person walked by the sensors, they would only output a single peak (as opposed to
multiple rail-outs) and would quickly return to their starting value.

IR Remote and Receiver
We used an Arduino IR remote and receiver to communicate with the MCU. The IR receiver
module has three pins: 3.3V power, GND, and a digital output pin. The remote outputs a binary
sequence of bits via its light source whenever a button is pressed. The MCU then receives this
sequence and decodes it to determine which button was pressed. For example, this is the signal
received for one of the buttons:

To receive and decode button presses, the MCU constantly reads the value of the IR module
output pin. The signal rests at a high value, so once the MCU detects a low value, it begins
reading the signal. The MCU uses a delay function (which itself utilizes on-board timers) to wait
until the proper time to read each bit from the IR receiver module.

LED Matrix
The 32x32 LED Matrix was a difficult piece of hardware to figure out. We used the hardware
from a previous MicroPs group, which was helpful because in their report, they found good
resources that described how the hardware worked and also one way to interface with it [2].

Essentially, there are two data buses that control the top and bottom half of the display: (R0, G0,
B0) and (R1, G1, B1), and one row address bus, A[3:0], that controls which row to be displayed.
The display will light up two rows at a time, for example Row 0 and Row 16, on the top and

bottom half of the displays. Below shows a schematic of this from the Glen Akin’s wikipedia
page [3]:

To drive the display, a very specific sequence of events needs to be triggered, for a single row to
be lit up. This sequence is outlined (again) by the Glen Akin’s tutorial [3]:

1. Shift in the 32 bits of RGB data using the R0, G0, B0, R1, G1, B1 buses and SCLK.
2. Assert BLANK = 1 to blank the display.
3. LATCH the contents of the column driver’s shift registers by switching on and off LATCH.
4. Set A[3:0] to the row that is next to display.
5. Deassert BLANK = 0 to display the row.

So, we designed an FSM to complete all of these steps in sequence, and then repeat for each
row to be displayed. A diagram for which is shown below:

Next, we chose an appropriate clock frequency. To run the display, the rows need to be time
multiplexed at 1/16th the total frequency, since only one set of rows can be driven at a time.
According to the reference document, the display should update every 100-200 seconds to
avoid flickering. Meaning that each row should be displayed at a frequency of 1.6-3.2kHz. Since
each run of the FSM is 64 clk cycles, this means that our target clk frequency should be around
100-200kHz. Since our internal clk is 12MHz, we downsample this by 2^6 = 64, to achieve a
desired clk frequency of 187.5kHz.

We hooked up the pins to our display, and debugged the system by checking the pins with the
logic analyzer, eventually getting the following outputs shown by the figures below. There is a bit
of noise (probably from parasitics) but it doesn’t seem to mess with the display.

Note that D0 is SCLK, D1-D3 are R0, G0, and B0, D4-D7 are A3, A2, A1, and A0 (also shown in
HEX by the Parallel Decoder), D8 is LATCH, and D9 is BLANK. We see the large cycle of
iterating over each row address A[3:0] from 1 to 16. As shown below, SCLK should only be sent
while the RGB data transfer is happening.

Zooming in on a single row cycle, we see more visibly the SCLK signal, the data transfer for the
first 32 cycles corresponding to each column on lines D1 through D3 (R0, G0, B0). We also see
the order of blank → latch → address → unblank is being followed properly by the lines D4-D7
(A[3:0]), D8 (LATCH), and D9 (BLANK).

After getting the display to work for a static and repeating matrix, we updated the code to
display a matrix stored on the FPGA and updated with the values for maximum and current
capacity. At the start of each display refresh (col==0, row==0), we introduced a bit of next state
logic to read and save the current updated value sent by the MCU for either maximum capacity
or current capacity and update the display accordingly.

We then create multiple layers of combinational logic to decode this into the row of RGB data
that we want to send to the state machine. The lowest level being a digit decoder that takes a
single digit and outputs a 5x5 bitmap for that character. The level above that being the converter
that takes in capacity [7:0] and decodes an entire 5x32 bitmap displaying that 3 digit number.
The top level being a brick of combinational logic that stores the entire 32x32 bitmap and
determines the current RGB values to display from the information on the current row being
displayed.

Schematic/Wiring Diagram

Results
The results of this capacity monitoring system were very successful. Setting up the PIR motion
sensors on a table, and walking in front of them in both directions, they were able to read
changes in capacity to about a 70-80% accuracy. And these numbers were appropriately sent
and displayed on both the LED matrix and on the website hosted by the ESP8266. Additionally,
user inputs that change in maximum and current capacity sent in by both the IR remote and the

website hosted by the ESP8266 were able to update both the LED matrix and on the website.
Linked below is a brief video showing this system in action:

https://drive.google.com/file/d/1otaWAF4-AMS8CwZeu324x4Ngav3lktR3/view?usp=sharing

References

[1] PIR sensor datasheet: https://www.farnell.com/datasheets/2617518.pdf

[2] David Sobek and Jerry Liang, Final Project Report: Bead Maze with LED Matrix and
Accelerometer, E155 Final Report, 2019.
http://pages.hmc.edu/harris/class/e155/projects19/Sobek_Liang.pdf

[3] Adkins, Glen. “RGB LED Panel Driver Tutorial.” RGB LED Panel Driver Tutorial, 2014,
https://bikerglen.com/projects/lighting/led-panel-1up/.

Bill of Materials

Name Part No. Cost/Unit Quantity Total Cost

MCU STM32F401RE $13.83 2 $27.66

FPGA MAX1000 $26.66 1 $26.66

PIR Motion
Sensors

EKMC2601111K $5.54 2 $11.08

LED Matrix [1] 1

IR Remote and
Receiver

[2] 1

Wi-Fi Module [3] 1

[1] Borrowed from the E155 supply cabinet. A previous project purchased this matrix.
[2] Leftover from an Elegoo UNO R3 Super Starter Kit (SP20 E80 Lab Kit)
[3] Borrowed from the E155 supply cabinet.

C Code
Main MCU (Runs all devices except the ESP8266)
//

// Main

//

https://drive.google.com/file/d/1otaWAF4-AMS8CwZeu324x4Ngav3lktR3/view?usp=sharing
https://www.farnell.com/datasheets/2617518.pdf
http://pages.hmc.edu/harris/class/e155/projects19/Sobek_Liang.pdf
https://bikerglen.com/projects/lighting/led-panel-1up/

#include "STM32F401RE.h"

#include <stdbool.h>

#include <string.h>

int main(void) {

configureFlash();

configureClock();

// Enable GPIOA&C and TIM2 clock

RCC->AHB1ENR.GPIOAEN = 1;

RCC->AHB1ENR.GPIOBEN = 1;

RCC->AHB1ENR.GPIOCEN = 1;

uint32_t* RCCPtr = ((uint32_t *)0x40023840);

*RCCPtr |= (1 << 0); // Enable timer2

initTIM(TIM2);

initADC();

// // LED pins

pinMode(GPIOA, 0, GPIO_OUTPUT); // Down LED

pinMode(GPIOA, 1, GPIO_OUTPUT); // Up LED

// pinMode(GPIOA, 6, GPIO_OUTPUT); //errors LED

// pinMode(GPIOA, 4, GPIO_INPUT); // IR out

pinMode(GPIOB, 0, GPIO_OUTPUT); // Test signal. Tells us when the MCU is

// // reading the IR output.

// LED Matrix Pins

//PA3 (2^7)

//PA2

//PA10

//PB3

//PB5

//PB4

//PB10

//PA8 (least sig)

//PA9 (select)

pinMode(GPIOA, 3, GPIO_OUTPUT);

pinMode(GPIOA, 2, GPIO_OUTPUT);

pinMode(GPIOA, 10, GPIO_OUTPUT);

pinMode(GPIOB, 3, GPIO_OUTPUT);

pinMode(GPIOB, 5, GPIO_OUTPUT);

pinMode(GPIOB, 4, GPIO_OUTPUT);

pinMode(GPIOB, 10, GPIO_OUTPUT);

pinMode(GPIOA, 8, GPIO_OUTPUT);

pinMode(GPIOA, 9, GPIO_OUTPUT);

digitalWrite(GPIOB, 0, 0);

// Min and Max ADC output, for debugging

int Max1 = 0;

int Max2 = 0;

int Min1 = 9999;

int Min2 = 9999;

// Interior of room and exterior sensors triggered.

bool extSensorThisTime = 0;

bool intSensorThisTime = 0;

bool extSensorLastTime = 0;

bool intSensorLastTime = 0;

// People entering and leaving for debugging

int peopleIn = 0;

int peopleOut = 0;

// FSM for determining if someone is entering or leaving. # people in

room. # error inputs

// the MCU doesn't understand

int state = 0;

int people = 0;

int errors = 0;

// Default capacity

int capacity = 10;

// Timeout timer if someone activates one PIR without

// activating the other

long timer = -1;

// Whether the people or occupancy needs to be updated

bool peopleChanged = true;

bool capacityChanged = true;

// Pins that tell this MCU whether the webpage is

// requesting to change capacity or maximum.

pinMode(GPIOA, 0, GPIO_INPUT);// 5

pinMode(GPIOA, 1, GPIO_INPUT);// 4

pinMode(GPIOB, 8, GPIO_INPUT);

pinMode(GPIOB, 9, GPIO_INPUT);

int cupThisTime = digitalRead(GPIOA, 0);

int cdownThisTime = digitalRead(GPIOA, 1);

int mupThisTime = digitalRead(GPIOB, 8);

int mdownThisTime = digitalRead(GPIOB, 9);

int cupLastTime = cupThisTime;

int cdownLastTime = cdownThisTime;

int mupLastTime = mupThisTime;

int mdownLastTime = mdownThisTime;

while(1)

{

// Process IR input

int IRResult = -1;

if(digitalRead(GPIOA, 4) == 0)

{

IRResult = IRProcessing();

delay_millis(TIM2, 100);

}

if(IRResult == 11101011) {togglePin(GPIOA, 1); people--; peopleChanged

= true;}

if(IRResult == 11101110) {togglePin(GPIOA, 0); people++; peopleChanged

= true;}

if(IRResult == 10111011) {capacity++; capacityChanged = true;}

if(IRResult == 10111010) {capacity--; capacityChanged = true;}

if(IRResult == 10101010) {errors = 0;}

// Update if website requested it

cupLastTime = cupThisTime;

cdownLastTime = cdownThisTime;

mupLastTime = mupThisTime;

mdownLastTime = mdownThisTime;

cupThisTime = digitalRead(GPIOA, 0);

cdownThisTime = digitalRead(GPIOA, 1);

mupThisTime = digitalRead(GPIOB, 8);

mdownThisTime = digitalRead(GPIOB, 9);

if (cupLastTime != cupThisTime) {people++; peopleChanged = true;}

if (cdownLastTime != cdownThisTime) {people--; peopleChanged = true;}

if (mupLastTime != mupThisTime) {capacity++; capacityChanged = true;}

if (mdownLastTime != mdownThisTime) {capacity--; capacityChanged =

true;}

// Read ADC values

setADC(10);

while(ADC1->ADC_SR.EOC==0){}

int analogIn1 = ADC1->ADC_DR;

setADC(11);

while(ADC1->ADC_SR.EOC==0){}

int analogIn2 = ADC1->ADC_DR;

if (analogIn1 > Max1) {Max1 = analogIn1;}

if (analogIn2 > Max2) {Max2 = analogIn2;}

if (analogIn1 < Min1) {Min1 = analogIn1;}

if (analogIn2 < Min2) {Min2 = analogIn2;}

// If ADC values are over threshold, trigger sensor

extSensorLastTime = extSensorThisTime;

intSensorLastTime = intSensorThisTime;

extSensorThisTime = analogIn1 > 1800;

intSensorThisTime = analogIn2 > 1800;

bool extSensorTrigger = extSensorThisTime && !extSensorLastTime;

bool intSensorTrigger = intSensorThisTime && !intSensorLastTime;

// FSM State

if (state == 0 && extSensorTrigger){state = 1; timer =

99999999;}//timer = 999999;

else if (state == 1 && intSensorTrigger){state = 0; people++;

peopleChanged = true; timer = -1; togglePin(GPIOA, 1); delay_millis(TIM2,

600);}//1

else if (state == 0 && intSensorTrigger){state = 2; timer =

99999999;}//timer = 999999;

else if (state == 2 && extSensorTrigger){state = 0; people--;

peopleChanged = true; timer = -1; togglePin(GPIOA, 0); delay_millis(TIM2,

600); }//0

else if (state != 1 && timer == 0){timer = -1; state = 0; errors++;}

if (timer > 0) {timer--;}

// Ensure people and occupancy don't go negative

if (people < 0) {people = 0;}

if (capacity < 0) {capacity = 0;}

//PA3 (2^7)

//PA2

//PA10

//PB3

//PB5

//PB4

//PB10

//PA8 (least sig. bit)

//PA9 (select)

// Send People to FPGA (select low)

if (peopleChanged)

{

digitalWrite(GPIOA, 9, 0);

int oldPeople = people;

if (people >= 128){people -= 128; digitalWrite(GPIOA, 3, 1);} else

{digitalWrite(GPIOA, 3, 0);}

if (people >= 64){people -= 64; digitalWrite(GPIOA, 2, 1);} else

{digitalWrite(GPIOA, 2, 0);}

if (people >= 32){people -= 32; digitalWrite(GPIOA, 10, 1);} else

{digitalWrite(GPIOA, 10, 0);}

if (people >= 16){people -= 16; digitalWrite(GPIOB, 3, 1);} else

{digitalWrite(GPIOB, 3, 0);}

if (people >= 8){people -= 8; digitalWrite(GPIOB, 5, 1);} else

{digitalWrite(GPIOB, 5, 0);}

if (people >= 4){people -= 4; digitalWrite(GPIOB, 4, 1);} else

{digitalWrite(GPIOB, 4, 0);}

if (people >= 2){people -= 2; digitalWrite(GPIOB, 10, 1);} else

{digitalWrite(GPIOB, 10, 0);}

if (people >= 1){people -= 1; digitalWrite(GPIOA, 8, 1);} else

{digitalWrite(GPIOA, 8, 0);}

people = oldPeople;

delay_millis(TIM2, 8);

}

// Send Capacity to FPGA (select high)

if (capacityChanged)

{

digitalWrite(GPIOA, 9, 1);

int oldCapacity = capacity;

if (capacity >= 128){capacity -= 128; digitalWrite(GPIOA, 3, 1);}

else {digitalWrite(GPIOA, 3, 0);}

if (capacity >= 64){capacity -= 64; digitalWrite(GPIOA, 2, 1);} else

{digitalWrite(GPIOA, 2, 0);}

if (capacity >= 32){capacity -= 32; digitalWrite(GPIOA, 10, 1);}

else {digitalWrite(GPIOA, 10, 0);}

if (capacity >= 16){capacity -= 16; digitalWrite(GPIOB, 3, 1);} else

{digitalWrite(GPIOB, 3, 0);}

if (capacity >= 8){capacity -= 8; digitalWrite(GPIOB, 5, 1);} else

{digitalWrite(GPIOB, 5, 0);}

if (capacity >= 4){capacity -= 4; digitalWrite(GPIOB, 4, 1);} else

{digitalWrite(GPIOB, 4, 0);}

if (capacity >= 2){capacity -= 2; digitalWrite(GPIOB, 10, 1);} else

{digitalWrite(GPIOB, 10, 0);}

if (capacity >= 1){capacity -= 1; digitalWrite(GPIOA, 8, 1);} else

{digitalWrite(GPIOA, 8, 0);}

capacity = oldCapacity;

delay_millis(TIM2, 8);

}

peopleChanged = false;

capacityChanged = false;

}

}

//

// Functions

//

int IRProcessing()

{

while (digitalRead(GPIOA, 4) == 0){}

delay_micros(TIM2, 2550); //2550

digitalWrite(GPIOB, 0, 1);

int hold = digitalRead(GPIOA, 4);

if (hold == 0)

{digitalWrite(GPIOB, 0, 0);return -1;}

digitalWrite(GPIOB, 0, 0);

delay_micros(TIM2, 31100);

int waitTime = 600;

// Wait until the next bit is being displayed and read it.

// Creates a binary result

int result = 0;

digitalWrite(GPIOB, 0, 1);

result += digitalRead(GPIOA, 4);

digitalWrite(GPIOB, 0, 0);

delay_micros(TIM2, waitTime);

digitalWrite(GPIOB, 0, 1);

result += digitalRead(GPIOA, 4)*10;

digitalWrite(GPIOB, 0, 0);

delay_micros(TIM2, waitTime);

digitalWrite(GPIOB, 0, 1);

result += digitalRead(GPIOA, 4)*100;

digitalWrite(GPIOB, 0, 0);

delay_micros(TIM2, waitTime);

digitalWrite(GPIOB, 0, 1);

result += digitalRead(GPIOA, 4)*1000;

digitalWrite(GPIOB, 0, 0);

delay_micros(TIM2, waitTime);

digitalWrite(GPIOB, 0, 1);

result += digitalRead(GPIOA, 4)*10000;

digitalWrite(GPIOB, 0, 0);

delay_micros(TIM2, waitTime);

digitalWrite(GPIOB, 0, 1);

result += digitalRead(GPIOA, 4)*100000;

digitalWrite(GPIOB, 0, 0);

delay_micros(TIM2, waitTime);

digitalWrite(GPIOB, 0, 1);

result += digitalRead(GPIOA, 4)*1000000;

digitalWrite(GPIOB, 0, 0);

delay_micros(TIM2, waitTime);

digitalWrite(GPIOB, 0, 1);

result += digitalRead(GPIOA, 4)*10000000;

digitalWrite(GPIOB, 0, 0);

return result;

}

void sendString(USART_TypeDef * USART, char * str) {

char * ptr = str; // Get a pointer to the first element in the array.

// Check if ptr is the null terminator (i.e. 0).

// Otherwise, send the character and post-increment the pointer to point

to

// the next character in the string.

while (*ptr) sendChar(USART, *ptr++);

}

int inString(char request[], char des[]) {

if (strstr(request, des) != NULL) {return 1;}

return -1;

}

ESP8266 MCU Code (runs just the ESP8266 and communicates with the Main MCU)
// main.c

#include "STM32F401RE_FLASH.h"

#include "STM32F401RE_RCC.h"

#include "STM32F401RE_USART.h"

#include "STM32F401RE_GPIO.h"

#include "STM32F401RE_SPI.h"

#include <string.h> // for strstr()

#include <stdint.h> // for integer types (i.e., uint32_t)

#include <stdio.h> // for sprintf()

#define USART_ID USART1_ID

#define BUFF_LEN 32

///

// Provided Constants and Functions

///

//Defining the web page in two chunks: everything before the current time,

and everything after the current time

//Please see the e155 website for a human-readable version of the file

"webpage.html"

char * webpageStart = "<!DOCTYPE html><html><head><title>Final Project

Demo</title><meta name=\"viewport\" content=\"width=device-width,

initial-scale=1.0\"></head><body><h1>Marz and Max Covid Police Capacity

Monitoring System</h1>";

char * currentCapstr = "<form action=\"cup\"><input type=\"submit\"

value=\"Increase current capacity\" /></form>\

<form action=\"cdown\"><input type=\"submit\" value=\"Decrease current

capacity\" /></form>";

char * maxCapstr = "<form action=\"mup\"><input type=\"submit\"

value=\"Increase maximum capacity\" /></form>\

<form action=\"mdown\"><input type=\"submit\" value=\"Decrease maximum

capacity\" /></form>";

char * webpageEnd = "</body></html>";

// Sends a null terminated string of arbitrary length

void sendString(USART_TypeDef * USART, char * str) {

char * ptr = str; // Get a pointer to the first element in the array.

// Check if ptr is the null terminator (i.e. 0).

// Otherwise, send the character and post-increment the pointer to point

to

// the next character in the string.

while (*ptr) sendChar(USART, *ptr++);

}

//determines whether a given character sequence is in a char array

request, returning 1 if present, -1 if not present

int inString(char request[], char des[]) {

if (strstr(request, des) != NULL) {return 1;}

return -1;

}

uint8_t updateCurrentCap(char request[], uint8_t currCapacity) {

// The request has been received. now process to determine whether to

turn the LED on or off

if (inString(request, "cup") == 1) {

togglePin(GPIOA, 5);

currCapacity += 1;

}

if (inString(request, "cdown") == 1) {

togglePin(GPIOA, 4);

currCapacity -= 1;

}

return currCapacity;

}

uint8_t updateMaximumCap(char request[], uint8_t maxCapacity) {

// The request has been received. now process to determine whether to

turn the LED on or off

if (inString(request, "mup") == 1) {

togglePin(GPIOB, 8);

maxCapacity += 1;

}

if (inString(request, "mdown") == 1) {

togglePin(GPIOB, 9);

maxCapacity -= 1;

}

return maxCapacity;

}

///

// Other Functions

///

void sendHTML(USART_TypeDef * ESPUSART, char maxCapacity[128], char

currCapacity[128], char overCapacity[128]){

// Transmit the webpage over UART by sending a series of strings:

sendString(ESPUSART, webpageStart);

sendString(ESPUSART, "
"); // Line break

sendString(ESPUSART, "<h2>Maximum Capacity:</h2>");

sendString(ESPUSART, maxCapacity);

sendString(ESPUSART, "

"); // Line break

sendString(ESPUSART, "Update Maximum Capacity: ");

sendString(ESPUSART, maxCapstr);

sendString(ESPUSART, "
"); // Line break

sendString(ESPUSART, "<h2>Current Capacity:</h2>");

sendString(ESPUSART, currCapacity);

sendString(ESPUSART, "

"); // Line break

sendString(ESPUSART, "Update Current Capacity: ");

sendString(ESPUSART, currentCapstr);

sendString(ESPUSART, "
"); // Line break

sendString(ESPUSART, "<h2>");

sendString(ESPUSART, overCapacity);

sendString(ESPUSART, "</h2>");

sendString(ESPUSART, webpageEnd);

}

uint8_t readCapacity(){

uint8_t capacity = 0;

if(digitalRead(GPIOA, 7)==1) capacity = 64;

if(digitalRead(GPIOA, 0)==1) capacity += 32;

if(digitalRead(GPIOB, 3)==1) capacity += 16;

if(digitalRead(GPIOB, 5)==1) capacity += 8;

if(digitalRead(GPIOB, 4)==1) capacity += 4;

if(digitalRead(GPIOB, 10)==1) capacity += 2;

if(digitalRead(GPIOA, 8)==1) capacity += 1;

return capacity;

}

///

// main()

///

int main(void) {

// Configure flash and clock

configureFlash();

configureClock(); // Set system clock to 84 MHz

// Turn on GPIOA and GPIB

RCC->AHB1ENR.GPIOAEN = 1;

RCC->AHB1ENR.GPIOBEN = 1;

// LED Matrix Pins

//PA7 (2^6) changed from PA2

//PA0 changed from PA10

//PB3

//PB5

//PB4

//PB10

//PA8 (least)

//PA1 (select) changed from PA9

// To read capacity:

pinMode(GPIOA, 7, GPIO_OUTPUT); // changed from PA2

pinMode(GPIOA, 0, GPIO_OUTPUT); // changed from PA10

pinMode(GPIOB, 3, GPIO_OUTPUT);

pinMode(GPIOB, 5, GPIO_OUTPUT);

pinMode(GPIOB, 4, GPIO_OUTPUT);

pinMode(GPIOB, 10, GPIO_OUTPUT);

pinMode(GPIOA, 8, GPIO_OUTPUT);

pinMode(GPIOA, 1, GPIO_OUTPUT); // changed from PA9

// To update capacity:

//PA5: increase current

//PB5: decrease current

//PB4: increase max

//PB10: decrease max

pinMode(GPIOA, 5, GPIO_OUTPUT); // plugged into PA5

pinMode(GPIOA, 4, GPIO_OUTPUT); // plugged into PA4

pinMode(GPIOB, 8, GPIO_OUTPUT); // plugged into PA8

pinMode(GPIOB, 9, GPIO_OUTPUT); // plugged into PA9

// Initialize the UART connection for the ESP8266

USART_TypeDef * ESPUSART = initUSART(USART1_ID); // USART using PA9

and PA10

uint8_t capacity, maxCapacity, currCapacity = 0;

while(1) {

/* Wait for ESP8266 to send a request.

Requests take the form of '/REQ:<tag>\n', with TAG being <= 10

characters.

Therefore the request[] array must be able to contain 18 characters.

*/

// Receive web request from the ESP

char request[BUFF_LEN] = " "; // initialize to

known value

int charIndex = 0;

// Keep going until you get end of line character

while(inString(request, "\n") == -1) {

// Wait for a character to be received before reading the RX

buffer

while(!ESPUSART->SR.RXNE){

//capacity = readCapacity();

//if(digitalRead(GPIOA, 1)==1) maxCapacity = capacity;

//else currCapacity = capacity;

}

request[charIndex++] = (char) receiveChar(ESPUSART);

}

capacity = readCapacity();

if(digitalRead(GPIOA, 1)==1) maxCapacity = capacity;

else currCapacity = capacity;

currCapacity = updateCurrentCap(request, currCapacity);

maxCapacity = updateMaximumCap(request, maxCapacity);

for(int i = 0; i < 99; i++);

char maxCap[128], currCap[128], overCap[128];

sprintf(maxCap, "The Maximum Capacity is %d!", maxCapacity);

sprintf(currCap, "The Current Capacity is %d!", currCapacity);

if(maxCapacity<=currCapacity) sprintf(overCap, "We are currently

over capacity!");

else sprintf(overCap, "We are currently under capacity, free to

enter :)");

// Send HTML webpage to ESP

sendHTML(ESPUSART, maxCap, currCap, overCap);

}

}

Verilog Code

// Top Level Module: FPGA Driver

// Matrix Display Logic: set_next_RGBstring

// Setting registers in LED Display: matrix_row_FSM

// clk_gen: outputs slow clk

// find_Digits: determines 5x32 matrix from capacity input

// digits: determines 5x5 matrix from digit input

