
Bal(l)ancing Act: PID controlled balancing of a ball using resistive
touch sensing and dual-servo actuation

Caitlin Huang, Hugo So
MicroPs (E155) Fall 2021

Abstract—This document describes the design,
implementation, and control of a ball-balancing panel. This
project aims to create an integrated system using an
STM32F401RE microcontroller to implement sensing and PID
control. The system includes a resistive touch panel for sensing,
and two SG90 micro servos for actuation. The mechanical
components of the system are mostly 3D-printed. The project was
successfully able to keep the ball actively balanced near the
center of the panel, although the ball does not tend to settle at the
setpoint.

I. INTRODUCTION

The system is designed to integrate several subsystems into
a control loop: the dynamics of the ball dictate its motion on
the sensing panel, which generates data that indicates the
location of the ball. The location data is fed to a PID controller
that calculates a target angle for the servos. The current
position of the ball and angle of the panel are accounted for by
driving the servos to set the desired panel angle. The panel
pose then dictates the dynamics of the ball, forming a closed
control loop (Fig. 1).

For sensing the location of the ball, it is placed on a
resistive touch panel, which scans between the x- and y-axes
to inputs. The analog voltage read from the panel is then
passed through a 12-bit analog-digital converter (ADC) on the
STM32F401RE microcontroller unit (MCU), which converts
the voltage to a digital signal that the MCU understands. A
windowed average of two samples of the ADC output is
computed to discard noisy inputs and converted back to an
analog voltage value. The analog voltage is then converted to
a position using a calibration curve and fed into a
Proportional-Integral-Derivative (PID) controller. The PID
controller then computes the error between the detected
position and the desired setpoint, and uses the PID gains to
calculate an appropriate control effort for each servo. Different
PID gains are required for each axis due to different x and y
dimensions of the touch panel. Note that the PID calculation
for each axis is decoupled. The control effort was tuned to
achieve desired servo angles via pulse-width modulation
(PWM).

Apart from simply presenting a relatively simple but
difficult-to-implement controls problem, this project is an
analog for several controls problems with practical
applications. The closed-loop control of actuators using
external sensor data is similar to the balancing capabilities
used in camera gimbals or Segways and hoverboards. The
control problem of using the motion of a joint to actuate an
effector is reminiscent of robotic arms used in industrial
automation and mobile robots such as robotic quadrupeds.

Fig. 1. System block diagram.

II. PHYSICAL SUBSYSTEM

Fig. 2. Photograph of completed system.

The structure and actuating components of the system are
mostly composed of 3D printed parts and COTS fasteners
(Fig. 3). The system is mounted on an aluminum baseplate,
upon which a square base is mounted. The top of the base
tower interfaces with a universal joint that allows the tilting
panel to pitch and roll, but not yaw. The touch panel is
mounted in a frame with attachment points to the universal
joint to form the tilting panel. The top panel also has two
attachment points so that linkages can be attached to actuate
the panel.

©2021 IEEE 1

Fig. 3. CAD model of final mechanical subsystem.

The system was designed in CAD for 3D printing, and to
verify fit and motion under actuation (Fig. 3). This was
especially useful for estimating an initial servo angle vs. panel
pose calibration curve, which allowed for informed design of
the linkages and servo programming. The servos are mounted
to a pair of motor mounts, also fastened to the baseplate.
Driver linkages and free secondary linkages were used to
connect the servos to the top panel, with actuating joints at
multiple points to account for lateral movement in the linkages
as the panel tilts. Washers and foam blocks were added to the
system to decrease play in the linkage joints and jitter from the
servo mounts. A bill of materials is included in Appendix B.

III. SENSOR IMPLEMENTATION

A. Custom Sensor Design FPGA Design
The initial custom sensor design consisted of three primary

layers; a top layer consisting of rows of aluminum foil adhered
to a sheet of clear polyvinyl chloride (PVC), a middle spacer
layer laser-cut from a sheet of low density polyethylene
(LDPE), and a bottom layer of columns of aluminum foil
adhered to a sheet of paper. These layers are backed with an
aluminum plate, and the edges are clamped in place with a
3D-printed frame (Fig. 3). Wires are run to the aluminum foil
through holes in the frame, which also clamps the wires to the
foil, forming a mechanical connection. The intent of the
system is that the top and bottom layers remain separated by
the spacer sheet until the top sheet is depressed, such as by a
ball rolling across the surface.

Fig. 4. Photograph of completed custom sensor assembly.

To get the position from the sensor to the microcontroller,
the FPGA waited for inputs from the sensor and as master,
sent an eight bit data output logic (x and y positions) over
SPI_MOSI one bit at a time. This triggers an interrupt on the
microcontroller to read the position. Interrupts were used so
that the microcontroller did not need to continuously be
polling for a position. The sensor was tested and verified in
ModelSim. The waveforms are included in Appendix E. The
clock and inputs were forced in simulation. When there is no
contact, the sensor scans through the columns for row inputs,
and when an input is detected, the sensor goes into a state to
send data over to the microcontroller. Interrupts were enabled
on the microcontroller and tested by turning on an LED when
the data received matches the position sent over SPI from the
microcontroller [3]. SystemVerilog HDL is included in
Appendix D.

B. Resistive Touch Panel
The positions from the custom sensor ultimately were not

precise enough mostly due to false positives, so a resistive
panel was used instead. The touch panel has two layers
separated with dot spacers. It senses something on the panel
when the two resistive layers meet and create a resistive
divider from the power to ground pins. Depending on where
the force was detected, the resistances in the resistive divider
would change to give a different output voltage. The output
voltage from this divider is then read off to be converted to a
position.

The touch panel was first tested to see which pins were
connected to the same panel. To read a voltage, two of the
connected pins should be power and ground, one pin is left
tristated, and the remaining pin reads the output voltage.
These pin functions change depending on the axis to read from
[1]. How this was accounted for and implemented to read a
digital position will be discussed further in Section V,
Subsection A. Four 0.1µF bypass capacitors were added to
smooth out some of the noisy readings.

IV. SERVO IMPLEMENTATION

The system is actuated using a pair of SG90 9g micro
servos. The servos drive a set of two-bar linkages with
articulated joints that act on the top panel 3 inches away from
the centerpoint. Each servo was calibrated using two samples
(0 and 90 degrees) to get an equation that relates PWM duty
cycle to servo angle. The servo angles were also related to the
angle of the touch panel, first by using the CAD model and
then by using an inclinometer on the touch panel. This allowed
servo angles to be sent to the servos based on a desired panel
angle, which is easier to relate to the ball position within the
PID controller. The servo control equations are hard coded
into the setServo function of the servo driver. Calibration
curves are included in Appendix E.

A. Servo Selection
The original design for the system was actuated using a

dual cable drive, which uses two servos to essentially puppet
the top platform, which is always kept in tension. This design
presented both benefits and challenges. One benefit to this

2

design is the stability of the movement given that the tension
of the cables is tuned well. Unlike the current system, which
experiences bouncing and significant backlash, especially at
the ends of the panel further away from the servos, a cable
driven system keeps both sides of the panel in tension, keeping
it from bouncing. In the current system, which uses linkages,
the universal joint in the center acts as a fulcrum for the panel,
which is a long lever actuated at one end by the servo-driven
linkage. This means that at the opposite end of the platform,
the ball frequently bounces, reducing the pressure applied to
the platform and yielding false negatives. This leads to strong
oscillations when the ball is at that end of the platform. While
a windowed average of the control effort lessened this issue, it
persisted in the final design.

Even so, the linkage-driven design was selected for its
repeatability and relative ease of control. The relationship
between the servo angle and platform angle is almost exactly
linear, except when both servos are at a relatively large angle.
One important consideration was the range of motion offered
by each alternative and the servos required to drive each. The
linkage system can be driven with standard 180° servos, which
allows for somewhat precise control of the servo position.

In contrast, in order to achieve more than about 10° of
motion using the cable-driven system, continuous rotation
servos would have been required in order to drive a spool the
necessary angular distance. Because it is only possible to
directly control the speed of continuous rotation servos and
not the position, the implementation of precise setpoints and
granular PID control would have been difficult .

B. Servo Driver
Two timers were used to drive the servos. Timer 5 was

configured to PWM mode and sent PWM signals to two
channels, one for each servo. The PWM frequency remained a
constant 50Hz because that is the frequency required by the
servos, and the duty cycle varied based on the desired servo
angle. Timer 2 was used as a delay between PWM signals. To
drive the servos, the setServo function takes in two angles
and converts them to PWM signals for Timer 5. The two angle
inputs can be the outputs of the setPlatform function that
calculates servo angles based on the desired panel angle. The
original delay using Timer 2 called after each time setServo
was called would interfere with the PWM signal, changing the
frequency or changing the setServo angle mid pulse. One
way to mitigate that issue was to wait for the timer to finish
counting up to a period before setting a new servo angle so
that the new angle would not interfere with the current one.

V. MICROCONTROLLER DESIGN

A. Analog-Digital Converter and Coordinate Calculation
The four wire touch panel pins had alternating GPIO

pinModes to read the x and y ADC. In getCoordinates,
the function loops through two for loops where GPIO
pinMode and output is set initially before reading the analog
voltage pin. The raw readings from the ADC are noisy so the

values were filtered by comparing the most recent ADC
reading to the previous one and an average was taken from
every twenty samples. Then, using equations from calibration
curves, the ADC values were converted to an x position for
PID control.

B. PID Control
The PID controller first calls the coordinate calculation

function, which gets the position measurement from the ADC
and subtracts the desired position from the measured position
in each axis to obtain a control error. Note that calculating the
error in the getCoordinates function ensures that there is
no delay between the ADC reading and the PID error. This
error is passed into a discrete form of the PID controller
equation (equation 1).

𝑢[𝑛] = 𝐾
𝑝
𝑒[𝑛] + 𝐾

𝑖
𝑖=0

𝑛

∑ 𝑒[𝑖]𝑑𝑡 + 𝐾
𝑑
(𝑒[𝑛] − 𝑒[𝑛 − 1]) (1)

The gains for PID control are specified as global variables
in the file header, and unique P, I, and D gains are used for the
x- and y- axes independently. In both cases, the integral gain is
minimally used, and the proportional gain mostly dominates
the response. The derivative gain is used more for the x-axis,
which is larger and has a longer lever arm due to the geometry
of the touchscreen. To implement PID control, an integral of
the error was calculated by summing all previous errors in a
pair of integral_x/y variables, and a derivative of the
error is calculated by taking the difference between the current
error and previous error. The error is then stored in the
previous error variable to use on the next iteration of the PID
control loop.

Using equation 1, the controller outputs a control effort for
each servo. The control effort, which represents a pose for the
touch panel, is converted to a servo angle using the calibration
curves hard-coded into the setServo function. The servo
driver then sets the position of the servo, as discussed in
Section IV, Subsection B.

VI. RESULTS

The project was successful in generating a system that
sensed the ball’s location on the touchscreen and responded by
actuating the panel using a pair of servos. Independently, the
parts of the system work, that is, moving the ball around on
the platform causes a digital input to the MCU that allows it to
continuously output coordinates to the terminal. The PID is
then able to generate a setpoint for the pose of the panel in
each axis. Given panel angle setpoints, the servo driver is able
to calculate an appropriate servo angle and corresponding
PWM signal to send to the servo to achieve that setpoint.

However, there are several points in the system where it
breaks down in function. Because the ball does not always
make solid contact with the touchscreen due to bouncing and
force vectoring at the corners, the touch panel often reads a
default value, which causes violent oscillations in the servo
motion. The connection between the driving linkage and the

3

servo is not durable and begins to slip after testing for a few
hours, causing actuation to be incomplete and inconsistent. A
combination of these factors made PID difficult to tune
because it was difficult to get repeatable inputs to the system
and therefore difficult to consistently produce the same
outputs. The resultant system is able to move the ball around
the center of the platform, without being able to get the ball to
settle near the center. The system performs slightly better
when the position of the ball is constrained to a region near the
center of the platform; at the edges, the servo and linkages
sometimes fail to apply enough force to bring the ball back
without bouncing it. This causes oscillations and a very noisy
position input, which keep the ball stuck at the edge of the
platform. The next section will discuss improvements and
future work to address key issues present within the system.

VII. FUTURE WORK/IMPROVEMENTS

One simple way to address the issue of inconsistent
detection of ball location is to simply use a heavier ball that is
harder to bounce off the platform. This would ensure that a
consistent ball location is detected, yielding consistent PID
control effort outputs. The team found indication that this
approach would yield better results, as the PID outputs
obtained from pressing the ball into the platform are much
more stable and consistent than those obtained by the ball
rolling around.

A better filter on the input may also yield better controller
results. This may range anywhere from a better low-pass
filtering method to remove noise to more advanced Kalman
filtering techniques such as an EKF.

Mechanical shortcomings in the system can be addressed by
using metal linkages and motor mounts with less flex, more
rigid servo spline-linkage interfaces, and joints with less slop
to allow for more repeatable control. Stronger servos would
also allow the system to move more repeatably without
struggling and oscillating, especially when the ball is on the
opposite end of the panel. A better touchscreen or sensor may
also give the PID controller better error values.

A more extensive change to the system may include
implementing control on the FPGA, which may perform the
PID control calculations faster than the MCU does. This may
address the lag that was present in the system at some points,
which can be seen most noticeably when the ball overshoots
the centerpoint and doesn’t respond fast enough to return the
ball toward the center. One or a combination of these changes
is recommended for a second version of this system, and will
likely yield more desirable results.

REFERENCES

[1] Hantouch, USA, “How it works: 4-Wire Analog-Resistive Touch
Screens,” Sparkfun.
https://www.sparkfun.com/datasheets/LCD/HOW%20DOES%20IT%20
WORK.pdf

[2] “STM32F401xE Datasheet,” STMicroelectronics, Rev. 3, January 2015.
http://pages.hmc.edu/brake/class/e155/fa21/assets/doc/STM32F401RE_
Datasheet.pdf

[3] H. Limm and A. Moody, “E155 Final Project: Magic See-Saw,” E155
Project Reports, Fall 2019.
http://pages.hmc.edu/harris/class/e155/projects19/Limm_Moody.pdf

[4] “RM0368 Reference Manual: STM32F401xD/E advanced Arm-based
32-bit MCUs,” STMicroelectronics, Rev. 5, December 2018.
http://pages.hmc.edu/brake/class/e155/fa21/assets/doc/STM32F401RE_
Reference_Manual_RM0368.pdf

4

APPENDIX A. CIRCUIT SCHEMATIC

5

APPENDIX B. BILL OF MATERIALS

Component Vendor Part Number Cost Quantity Total

Resistive Touchscreen Ebay N/A $9.99 1 $9.99

SG90 9g Micro Servo Digi-Key SER0006 $3.62 2 $7.24

1/8" x 6" 6061 Al McMaster-Carr 8975K921 $6.64 1 $6.64

Stainless Steel Ball McMaster-Carr 9529K27 $3.87 1 $3.87

Assorted Hardware HMC Stockroom N/A <$5.00 N/A $5.00

Total $32.74

6

APPENDIX C. C CODE

main.c
// main.c

#include "STM32F401RE_FLASH.h"
#include "STM32F401RE_RCC.h"
#include "STM32F401RE_SPI.h"
#include "STM32F401RE_TIM.h"
#include "STM32F401RE_GPIO.h"
#include "STM32F401RE_ADC.h"
#include "main.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "STM32F401RE_USART.h"

#define USART_ID USART2_ID
#define cpol 0
#define cpha 0
#define X_PWM 0 // TIM5_ch1
#define Y_PWM 1 // TIM5_CH2
#define freq 50
#define clk_freq 84000000
#define xDes 0
#define yDes 0

#define kpx .8
#define kix 0
#define kdx 7.8

#define kpy 0.5
#define kiy 0
#define kdy 0.5

#define anglex_min -20
#define anglex_max 20

#define angley_min -9
#define angley_max 4

//float kp[] = {1.95, 2.31};
volatile double e_x = 0;
volatile double e_x1 = 0;
volatile double e_x2 = 0;
volatile double e_y = 0;
volatile double e_y1 = 0;
volatile double e_y2 = 0;
volatile double du = 0;
volatile double u = 0;
volatile double dv = 0;
volatile double v = 0;
volatile float xSum, ySum, xAvg, yAvg, xPos, yPos, u_prev, v_prev, integral_x, derivative_x,
integral_y, derivative_y;

volatile int xADC, yADC, x,y;

void configureGPIO(){
// enable clock to gpio
RCC->AHB1ENR.GPIOBEN = 1;

7

RCC->AHB1ENR.GPIOAEN = 1;
RCC->AHB1ENR.GPIOCEN = 1;

///
// SPI Pins
///

// set spi pins to alt functions
pinMode(GPIOB, SPI1_MOSI, GPIO_ALT);
pinMode(GPIOB, SPI1_SCK, GPIO_ALT);

// set cs pin to be read from FPGA
pinMode(GPIOB, SPI1_CS, GPIO_INPUT);

GPIOB->OSPEEDR = (0b11 << 2*SPI1_SCK); // set Pb3,6,7 to fastest clock
// configure alternate functions to AF5 selection (0101)

GPIOB->AFRL |= (0b0101 << 4*SPI1_MOSI);
GPIOB->AFRL |= (0b0101 << 4*SPI1_SCK);

///
// PWM Pins
///
pinMode(GPIOA, X_PWM, GPIO_ALT); // set pinA0 as output
pinMode(GPIOA, Y_PWM, GPIO_ALT); // set pinA0 as output

GPIOA->AFRL |= (0b0010 << 4*X_PWM); //alternate function for TIM5 AF02 PA0
GPIOA -> AFRL |= (0b0010 << 4*Y_PWM); //alternate function for TIM5 AF02 PA1

digitalWrite(GPIOA, X_PWM, 0); // initialize at 0
digitalWrite(GPIOA, Y_PWM, 0);

///
// ADC Pins
///

// set PC2 and PC3 as analog
// pinMode(GPIOC, 2, GPIO_ANALOG); // adc X position
// pinMode(GPIOC, 3, GPIO_ANALOG); // adc Y position
// pinMode(GPIOC,)

pinMode(GPIOB, 0, GPIO_OUTPUT); // set pinB0 as output

}

void SPI1_IRQHandler(){
uint8_t data = spiRx8();
if (data == 0b11100000){

digitalWrite(GPIOB, 0, 1);
}

}

volatile uint16_t xADC_prev, yADC_prev;

void getCoordinates(){
//reading y
for(int i = 1; i< 20; ++i){

pinMode(GPIOC, 1, GPIO_OUTPUT);
digitalWrite(GPIOC, 1, GPIO_LOW);

pinMode(GPIOC, 3, GPIO_OUTPUT);

8

digitalWrite(GPIOC, 3, GPIO_HIGH);

yADC = ADC_read(2,0);
if (abs(yADC - yADC_prev) < 600){ // discard noisy values

ySum = yADC+ySum;
}
yAvg = ((ySum*3.3)/(4096))/i; // convert ADC sum to voltage
yADC_prev = yADC; // store previous ADC

} yPos = -19*yAvg+16.9; //convert voltage to position y
e_y= yDes-yPos; // calculate error of that position y

//reading x
for(int i = 1; i< 20; ++i){

pinMode(GPIOC, 3, GPIO_INPUT); // c3 is tristated
pinMode(GPIOC, 0, GPIO_OUTPUT);
digitalWrite(GPIOC, 0, GPIO_LOW);

pinMode(GPIOC, 2, GPIO_OUTPUT);
digitalWrite(GPIOC, 2, GPIO_HIGH);

xADC_prev = xADC; // set previous val
xADC = ADC_read(1,1);
if (abs(xADC - xADC_prev) < 400){

xSum = xADC+xSum;
}
xAvg = ((xSum*3.3)/(4096))/i; // convert ADC sum to voltage

}xPos = 24.9*xAvg-20.7; // convert voltage to position x
e_x = xPos-xDes; // calculate error of that position x

}

void pid(){
getCoordinates(); // get the coordinates
integral_x = integral_x + e_x;
derivative_x = e_x - e_x1;
// control effort for servo x
u = (kpx * e_x) + (kix * integral_x) + (kdx * derivative_x);
// Update previous value
e_x1 = e_x;

integral_y = integral_y + e_y;
derivative_y = e_y - e_y1;
// control effort for servo y
v = (kpx * e_y) + (kix * integral_y) + (kdx * derivative_y);
// Update previous value
e_y1 = e_y;

}

///
// +x +y: up and right
// +x -y: down and right
// -x +y: up and left
// +x +y: down and left
///
void setServo(float anglex, float angley){

if (anglex > anglex_max){
anglex = anglex_max;

} else if (anglex< anglex_min){
anglex = anglex_min;

9

}

float pwmx, pwmy;
pwmx = -0.05*anglex +6.5; //3.3 to 13 6.5 is 0 -> 2 is 90 (pwm) = -0.05(angle) +6.5 , 4.25

for 45
pwmy = 0.047*angley +3.5; // 3.5 is 0 --> 7.7 is 90 (pwm) = 0.047(angle) + 3.5, 5.6 for 445
pwm(TIM5, 50, pwmx, pwmy);

}

float setPlatform(float anglex, float angley, int i){
float servo_angle[2];
servo_angle[0] = 2.86*anglex + 12.9; // x
servo_angle[1] = 1.99*angley + 14.4; // y
return servo_angle[i];

}

int main(void) {
configureFlash();
configureClock(); // Set system clock to 84 MHz
configureGPIO();
configureTIM2(); // initialize tim 2 for delay
pwmInit(TIM5); // initialize tim 5 for pwm

spiInit(cpol, cpha);

ADC_init();

USART_TypeDef * USART = initUSART(USART_ID); // usart for debugging purposes :)

// setServo(setPlatform(10, 10, 0), setPlatform(0, 0, 1));
// delay_pwm(1000);
// setServo(setPlatform(0, 0, 0), setPlatform(0, 0, 1));
// delay_pwm(1000);
//pwm(TIM5, 50, 4, 10);

setServo(0,0);

while(1){
uint8_t msg[96];
// PB0 is safety pin so can unplug from 3.3V to stop servos at any time
// manually toggle when ball is ready on plate
if(digitalRead(GPIOB, 0)){

pid();
// u = u_prev + 0.5*(u-u_prev);
// v = v_prev + 0.5*(v-v_prev);
while (TIM5->CNT != TIM5->ARR.ARR);
//if(e_x > 0){u=u+u*0.8;}
setServo(u, v);

} else { // set the plaform to zero
setServo(setPlatform(0, 0, 0), setPlatform(0, 0, 1));
delay_pwm(1000);
v = 0;
u = 0;

}

uint8_t i = 0;
do {
sendChar(USART, msg[i]);
i += 1;

} while (msg[i]);

10

sprintf(msg, "%d %d %d %d\n\r", (int) (u*100), (int) (v), (int) (xPos*100), (int)
(e_x*100));

}

}

TIMER.C

// ch_tim.c
// Source code for TIM functions

#include "STM32F401RE_TIM.h"
#include "STM32F401RE_RCC.h"

void pwmInit(TIM_TypeDef * TIM){
RCC->APB1ENR.TIM5EN = 1;

//control register CR
TIM->CR1.CMS = 0b00; //edge-aligned mode
TIM->CR1.DIR = 0; //upcounter
TIM->CR1.CKD = 0b00; // input clock divided by 1
TIM->CR1.CEN = 0; // disable counter

//register ccmrx
TIM->CCMR1.OC1M = 0b110; //pwm mode 1
TIM->CCMR1.OC2M = 0b110; //pwm mode 2
TIM->CCMR1.OC1PE = 1; //enable preload register
TIM->CCMR1.OC2PE = 1; //enable output 2 preload
//smcr register
TIM->SMCR.SMS = 0b000; //slave mode disabled
// ccer register
TIM->CCER.CC1P = 0; // ch 1 clock active high
TIM -> CCER.CC2P = 0; //ch 2 clk active high

}

void pwm(TIM_TypeDef * TIM, uint32_t freq, float dc1, float dc2){
// counter clk freq CK_CNT = fck_psc/(psc[15:0]+1)
uint32_t period = 84e6/freq;
float dutycycle1 = period*dc1/100;
float dutycycle2 = period*dc2/100;
TIM->CR1.UDIS = 1; //disable update events
TIM->CNT = 0; // reset counter
TIM->ARR.ARR = period;
TIM->CCR1.CCR1 = dutycycle1;
TIM->CCR2.CCR2 = dutycycle2;
//before starting counter, event generation register egr
//TIM->EGR.UG = 1; //initialize all registers

TIM->CR1.UDIS = 0; //enable update events

TIM->CCER.CC1E = 1; // on ch1
TIM->CCER.CC2E = 1; //on ch2
TIM->CR1.CEN = 1; //enable counter

}

void pwm_end(TIM_TypeDef * TIM) {
TIM->CR1.UDIS = 1; //disable update events
TIM-> CR1.CEN = 0; // disable counter
TIM-> CCER.CC1E = 0; // disable output
TIM->CCER.CC2E = 0; //disable output

}

11

void configureTIM2(){
RCC->APB1ENR.TIM2EN = 1; // clock to tim9
//control register CR
TIM2->CR1.CMS = 0b00; //edge-aligned mode
TIM2->CR1.DIR = 0; //upcounter
TIM2->CR1.CKD = 0b00; // input clock divided by 1
TIM2->CR1.URS = 1; //update when over or underflow
TIM2->CR1.CEN = 0; // disable counter
TIM2->SMCR.SMS = 0b000; //slave mode disabled

}

void delay_pwm(uint32_t delayms){
TIM2->CR1.UDIS = 1; // disable updates
TIM2-> CNT = 0; //reset count
TIM2->ARR.ARR = (84e3*delayms);
TIM2->CR1.OPM = 1; //mode: one pulse
TIM2->CR1.UDIS = 0; // renable updates
TIM2-> CR1.CEN = 1; //enable counter
while(!(TIM2->SR)&1); //registers are updated
TIM2-> SR = 0; // clear-> no updates
TIM2->CR1.CEN = 0; // disable counter

}

ADC.c
#include "STM32F401RE_ADC.h"

void ADC_init(){
RCC->APB2ENR.ADC1EN = 1; //enable clk to adc1
ADC1->CCR.ADCPRE = 0b01; // adcclk = pclk2/4
ADC1->CR2.ADON = 1; //power on adc

// x position PC1 ADC1_IN11
// y position PC2 ADC1_IN12
ADC1->SQR1.L = 0b01; // 2 conversions
ADC1->SQR3.SQ1 = 11; //first conversion: ADC1_IN12
ADC1->SQR3.SQ2 = 12; //second conversion: ADC1_IN11

ADC1->CR1.SCAN = 1; // enable scan mode
ADC1->CR2.EOCS = 1; // set at end of each regular conversion

}

uint16_t ADC_read(int pin, uint16_t i){
pinMode(GPIOC, pin, GPIO_ANALOG);
ADC1->CR2.CONT = 0; //single conversion mode
ADC1->CR2.SWSTART = 1; //start converison on regular channels
uint32_t adc[2];

while(!(ADC1->SR.EOC)); //wait for end of conversion
adc[0] = ADC1->DR.DATA;

while(!(ADC1->SR.EOC)); //wait or end of conversion
adc[1] = ADC1->DR.DATA;
return adc[i];

}

ADC.h
// STM32F401RE_ADC.h
// Header for ADC functions

12

#ifndef STM32F4_ADC_H
#define STM32F4_ADC_H

#include "STM32F401RE_RCC.h"
#include "STM32F401RE_GPIO.h"
#include <stdint.h>

///
// Definitions
///

#define __IO volatile

// Base addresses
#define ADC1_BASE (0x40012000UL) // base address of ADC1

///
// Bitfield structs
///
typedef struct {

volatile uint32_t AWDCH : 5;
volatile uint32_t EOCIE : 1;
volatile uint32_t AWDIE : 1;
volatile uint32_t JEOCIE : 1;
volatile uint32_t SCAN : 1;
volatile uint32_t AWDSGL : 1;
volatile uint32_t JAUTO : 1;
volatile uint32_t DISCEN : 1;
volatile uint32_t JDISCEN : 1;
volatile uint32_t DISCNUM : 3;
volatile uint32_t : 6;
volatile uint32_t JAWDEN : 1;
volatile uint32_t AWDEN : 1;
volatile uint32_t RES : 2;
volatile uint32_t OVRIE : 1;
volatile uint32_t : 5;

} ADC_CR1_bits;

typedef struct {
volatile uint32_t AWD : 1;
volatile uint32_t EOC : 1;
volatile uint32_t JEOC : 1;
volatile uint32_t JSTRT : 1;
volatile uint32_t STRT : 1;
volatile uint32_t OVR : 1;
volatile uint32_t : 26;

} ADC_SR_bits;

typedef struct {
volatile uint32_t SQ13 : 5;
volatile uint32_t SQ14 : 5;
volatile uint32_t SQ15 : 5;
volatile uint32_t SQ16 : 5;
volatile uint32_t L : 4;
volatile uint32_t : 8;

} SQR1_bits;

typedef struct {
volatile uint32_t SQ1 : 5;
volatile uint32_t SQ2 : 5;
volatile uint32_t SQ3 : 5;
volatile uint32_t SQ4 : 5;

13

volatile uint32_t SQ5 : 5;
volatile uint32_t SQ6 : 5;
volatile uint32_t : 2;

} SQR3_bits;

typedef struct {
volatile uint32_t ADON : 1;
volatile uint32_t CONT : 1;
volatile uint32_t : 6;
volatile uint32_t DMA : 1;
volatile uint32_t DDS : 1;
volatile uint32_t EOCS : 1;
volatile uint32_t ALIGN : 1;
volatile uint32_t : 4;
volatile uint32_t JEXTSEL : 4;
volatile uint32_t JEXTEN : 2;
volatile uint32_t JSWSTART : 1;
volatile uint32_t : 1;
volatile uint32_t EXTSEL : 4;
volatile uint32_t EXTEN : 2;
volatile uint32_t SWSTART : 1;
volatile uint32_t : 1;

} ADC_CR2_bits;

typedef struct {
volatile uint32_t : 16;
volatile uint32_t ADCPRE : 2;
volatile uint32_t : 4;
volatile uint32_t VBATE : 1;
volatile uint32_t TSVREFE : 1;
volatile uint32_t : 8;

} CCR_bits;

typedef struct {
volatile uint32_t DATA :16;
volatile uint32_t :16;

} ADC_DR_bits;

typedef struct {
__IO ADC_SR_bits SR;
__IO ADC_CR1_bits CR1;
__IO ADC_CR2_bits CR2;
__IO uint32_t SMPR1;
__IO uint32_t SMPR2;
__IO uint32_t JOFR1;
__IO uint32_t JOFR2;
__IO uint32_t JOFR3;
__IO uint32_t JOFR4;
__IO uint32_t HTR;
__IO uint32_t LTR;
__IO SQR1_bits SQR1;
__IO uint32_t SQR2;
__IO SQR3_bits SQR3;
__IO uint32_t JSQR;
__IO uint32_t JDR1;
__IO uint32_t JDR2;
__IO uint32_t JDR3;
__IO uint32_t JDR4;
__IO ADC_DR_bits DR;
__IO CCR_bits CCR;

} ADC_TypeDef;

#define ADC1 ((ADC_TypeDef *) ADC1_BASE)

14

///
// Function prototypes
///
void ADC_init();
uint16_t ADC_read(int pin, uint16_t i);
#endif

15

APPENDIX D. VERILOG CODE

module sensor (input logic clk, reset,

input logic [4:0] encoder, //EO, A3, A2, A1, A0

output logic [3:0] decoder,

output logic spi_clk, spi_mosi, spi_cs // J12, J13, G12

);

logic slo_clk;

logic [13:0] counter; //10k

always_ff @(posedge clk)

if(counter == 14'b10000) begin //slow down to 1.2kHz

counter <= 0;

slo_clk = ~slo_clk; end

else counter <= counter+1;

fsm fsminst(slo_clk, reset, encoder, decoder, spi_clk, spi_mosi, spi_cs);

endmodule

module fsm(input logic clk, reset,

input logic [4:0] encoder, //EO, A3, A2, A1, A0

output logic [3:0] decoder,

output logic spi_clk, spi_mosi, spi_cs

);

logic [3:0] state, nextstate, spi_msb, spi_lsb, count;

logic [7:0] data;

logic spi_do;

parameter S0 = 4'd0;

parameter S1 = 4'd1;

parameter S2 = 4'd2;

parameter S3 = 4'd3;

parameter S4 = 4'd4;

parameter S5 = 4'd5;

parameter S6 = 4'd6;

parameter S7 = 4'd7;

parameter S8 = 4'd8;

parameter S9 = 4'd9;

always_ff @(posedge clk)

16

if(reset) state <= S0;

else state <= nextstate;

// always_ff @(posedge clk)

// if(state == S9 || nextstate == S9) spi_do <= 1;

// else spi_do <= 0;

always_comb begin : scanning

case(state)

S0: if(encoder == 5'b01111) nextstate = S1;

else begin nextstate = S9;

end

S1: if(encoder == 5'b01111) nextstate = S2;

else begin nextstate = S9;

end

S2: if(encoder == 5'b01111) nextstate = S3;

else begin nextstate = S9;

end

S3: if(encoder == 5'b01111) nextstate = S4;

else begin nextstate = S9;

end

S4: if(encoder == 5'b01111) nextstate = S5;

else begin nextstate = S9;

end

S5: if(encoder == 5'b01111) nextstate = S6;

else begin nextstate = S9;

end

S6: if(encoder == 5'b01111) nextstate = S7;

else begin nextstate = S9;

end

S7: if(encoder == 5'b01111) nextstate = S8;

else begin nextstate = S9;

end

S8: if(encoder == 5'b01111) nextstate = S0;

else begin nextstate = S9;

end

S9: if(~spi_do) nextstate = S0;

else begin nextstate = S9;

end

default: nextstate = S0;

endcase

17

end

//output logic

assign data = {spi_msb, spi_lsb};

always_ff @(posedge clk)

if(state != S9) begin

spi_msb <= encoder[3:0];

spi_lsb <= state;

decoder <= state;

end

/// always_ff @(posedge clk)

// if(~spi_do || count != 4'd8 && count != 4'd0)

// spi_clk_pos = 1;

// else

// count = 0;

always_ff @(negedge clk)

if(spi_do && count <= 4'd9 && count >= 4'd1)

begin

spi_mosi = data[count-1];

count = count + 4'd1;

end

else if ((state == S9) && count == 4'd0) count = 4'd1;

else if(count == 4'd11)

begin

count = 4'd0;

end

else count = 4'd0;

assign spi_clk = (count >= 4'd2 && count < 4'd10 && (state == S9)) ? clk: 1'b0;

assign spi_do = (count <= 4'd10 && count > 4'd0) && (state == S9);

assign spi_cs = spi_do;

endmodule

18

APPENDIX E. MISC.
ModelSim Waveforms

Panel Angle vs. Servo Angle Calibration Curves

19

