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Abstract: 
 
The goal of this project was to program an LED strip to both display preset patterns and 
respond to music using a keypad, digital output microphone, FPGA, and microcontroller. Our 
goal was to take in sound data through the microphone, process the data using the fast Fourier 
Transform (FFT), and use I2S to communicate between the FPGA and the microcontroller to 
determine the color and number of LEDs to light up. The keypad was meant to allow the user to 
switch between the preset patterns and the music mode.  



 
Introduction: 
 
LED strips have recently become increasingly common as TikTok trends sweep the nation. One 
major reason for their appeal is their ability to sync to music, creating a visually appealing light 
show for the user. Our final project was to implement this functionality, along with allowing the 
user to swap between preset patterns. 
 
On the music side of things, we were to take in data using an input microphone and 
communicate the data to an FPGA, which was to process the input sound using the FFT. The 
output of the FFT was then to be communicated to the microcontroller using SPI, and based on 
the volume and frequency of the input sound, the microcontroller was to communicate to the 
LED strip through SPI to flash a certain number of LEDs with differing colors. 
 
Similarly, the keypad was to output a signal to the MCU to allow the user to swap between the 
preset patterns we had coded in C. The keypad was to send a signal to the MCU, switching 
between the preset patterns as the user pleases. 
 
A top-level block diagram of the system is shown below in Figure 1 
 
 

 
Fig. 1: Top-level block diagram of the system 

 
 
 
 
 
 



New Hardware: 
 
Our project used two pieces of new hardware: the SK9822 LED strip from BTF-Lighting and the 
I2S MEMS microphone from Adafruit.  
 
We used an SK9882 LED strip, which interfaces with SPI. The strip was 1 meter long and with 
144 individually addressable LEDs.The LEDs are RGB and the configuration for each LED 
are the same. The first byte determines the brightness of the LED, the next byte controls the 
amount of blue, and the next 2 bytes controlling the amount of green and red respectively. 
There is a port on the LED strip for Clock In, Data In, 5 V, and ground. We used power supply in 
the lab to provide the 5 V since powering the LED strip from the microcontroller could 
potentially draw too much current. 
 
The microphone required a 3.3 V input, along with bitclock (BCLK), left-right clock (LRCLK), and 
channel select (SEL) signals and output the sound data (DOUT) signal, bit by bit.  
 
The LRCLK signal was to run at the desired sampling frequency and BCLK signal was to run at 64 
times the frequency of LRCLK. We chose a combination of 46.9 kHz and 3MHz, respectively 
because 46.9kHz is considered by many to be close to the ideal sampling frequency for sound  
while also making it easy to achieve the BCLK frequency through division of the FPGA’s clock, 
which runs at 12MHz.  
 
The SEL signal was connected to ground to sample exclusively from the left channel. With two 
of these microphones, each would act as either the left or right channel and the SEL signal 
would be driven either high or low to designate which microphone to sample from. Because we 
were working with one microphone, we drove the signal low.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Schematics: 

 
Fig 2: Overall system schematic 

 

 
Fig. 3: Schematic of LED strip and addressable LEDs 

 

 
Fig. 4: Schematic of microphone interfacing with FPGA 



FPGA Design: 
 
The FPGA design for our involved setting up a system which was able to use I2S to take in sound 
input and process it using the FFT. 
 
The module for I2S was implemented by reading through the datasheet for the microphone, 
specifically page 7 of the referenced document. The block diagram for the module is shown 
below in figure 5. The inputs to the module for the I2S module were clk and sd (sound data), 
while the outputs were bclk, sel (lrclk), and dataOut[23:0]. The clk signal was driven by the on 
board 12MHz clock, while the sd signal was taken from the DOUT pin on on the microphone. 
Using a clock divider on the clk signal, we ran bclk at 3MHz and sel at 46.9kHz to sample the 
sound data. As suggested by the data sheet, after the lrclk signal changes, the dataOut[23:0] 
signal takes in the first 18 bits of data from sd as bits [23:6] and loads in six 0s as bits [5:0]. 
dataOut[23:0] is unchanged until the lrclk signal inverts, signifying that it’s time to sample 
again. Our SystemVerilog implementation of the I2S module is included in the Appendix. 
 

 
Fig. 5: Block diagram of I2S module 

 

 
 
 
 
 
 
 
 
 
 



The FFT was implemented through careful inspection of George Slade’s paper from 2013. The 
overall block diagram is shown below in figure 7. It was necessary to implement each of the 
lower-level modules shown in the diagram, and a short description of each is given below: 
 
Address Generating Unit:  
 
The AGU is responsible for outputting addresses to each of our RAMs, the addresses of our 
desired twiddle factors, and write signals for our RAMS. We should note that our addresses 
were to be outputted in bit reversed order. 
 
We followed the pseudo code in Table III of Slade’s paper closely for our SystemVerilog 
implementation. We used a state machine to model the pseudo code. We have 6 states: WAIT, 
CLEAR, LOAD, READ, WRITE, and DONE. We use the LOAD state to indicate when we want to 
load data into our RAM. We cycle between the READ and WRITE states, and using counters we 
were able to cycle the proper number of times before entering the DONE state. Table IV of 
Slade’s paper was used to check our addresses to confirm functionality.  
 

Butterfly Unit: 
 
The butterfly unit is essential to the FFT. It performs the recursive two point transforms that 
build up the whole 32 point FFT. The butterfly unit performs the complex addition and 
multiplication between the data samples and the twiddle factors. Although we are using 11 bits 
for the data, the input is a total of 16 bits to accommodate for bit growth. Slade stressed that 5 
bits for growth was essential for precision, and to also note that multiplication between two 16 
bit numbers results in a 32 bit number. We index from [30:15], the result of the multiplication 
for future operations.  
 
Twiddle ROM: 
 
The Twiddle ROM is essentially a look up table for the twiddle factors based on the twiddle 
address. We use a .txt file with the twiddle factors, and read those in. We then output the 
desired twiddle factor based on the twiddle address input from the AGU. The twiddle factors 
were taken from Table II of the Slade article.  
 
RAM: 
 
We use two dual port RAMs. In the FFT, we read from one RAM and write to the other 
simultaneously. The RAMs take the address from the AGU and reads them in bit reversed order. 
The RAMs also take in the write enable signals from the AGU. It was necessary to use a “ping-
pong scheme” in this implementation. 
 

Our SystemVerilog implementation of the FFT is included in the Appendix. 
 



 
Fig. 8: FFT block diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Microcontroller Design: 
 
Utilizing the code from Lab 6, we set up SPI interfacing between our STM32F401RE 
microcontroller and our SK9882 RGB LED strip. In the SPI protocol, our microcontroller acted as 
the master and the LED strip was the slave. Pins PA5 and PA7 were used for SCLK and DI 
respectively, while pins for Chip Enable nor “Master in Slave Out” were ignored as the LED strip 
did not have those ports. To display our desired pattern on the LED strip, we needed to send 2-
bytes of 0’s four times to act as the start frame, and 2-bytes of 1’S four times to act as the end 
frame. In between our two frames, we sent our data to configure the LED strip’s pattern. 
 

We used a global variable called LEDARR that puts our LEDS into a two-dimensional array of 
uint8_t’s. The LED array is 94x4, signifying 94 LEDS used as wells as an uint8_t value for global, 
red, green, and blue. To address each LED, we would use their index on the array, and set the 
other values accordingly. The global value always leads with three 1’s. This structure means 
that whatever value we input for global, we should OR it with 0xE0. The red, blue, and green 
values have 8 bits of resolution, meaning their values can be set from 0 to 255. To use this 
LEDARR properly, we have a function to clear the array, and another to set the array to desired 
values before any SPI transmission. We can then send these values over after using a start 
frame and end it with an end frame. 
 

We also used our microcontroller to read inputs from the digital keypad to switch between 
three patterns on the LED strip. We set ports A0, A1, and A4 as input pins to read in which 
button in the first row of the keypad was pressed. We then stay in the mode of the most 
recently pressed key, only changing until another valid button is pressed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results: 
 
We were successful in programming interfacing the SPI between the MCU and LED strip to 
display preset patterns based on a user’s keypad input. The preset patterns are visually 
appealing and fun to watch. 
 
However, we did not meet all the proposed specifications. We experienced difficulty in 
extracting the sound data from the microphone which inhibited us from being able to 
implement the music mode of the LED strip. This was very disappointing to us as it was the 
main component of our project and had gotten the software components working in simulation 
to facilitate the functionality. However, we acknowledge that attempting this project was no 
easy task. Implementing the FFT, I2S, and using SPI to communicate between not only the FPGA 
and MCU but also between the MCU and LED strip is not trivial, and we may have bitten off 
more than we could chew in the time allotted for the project. 
 
In pursuing projects of the sort in the future, we agree that it is important to understand and 
consider the difficulty of implementing each component in the time given. With more time and 
room for error, we could have either resolved the issue with the current microphone or 
ordered a new one that was easier to interface with.  
 
Overall, we still feel as though this project was an incredible learning experience and gave us a 
better understanding of how to choose hardware applicable to a certain problem and interface 
the new hardware with the other components. 
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Bill of Materials: 
 

Part Part Number Vendor Quantity Price/Unit Total Price 

1m LED Strip 
with 144 LEDs 

SK9882 Amazon 1 $31.99 31.99 

I2S Microphone SPH0645LM4H Adafruit 1 $6.95 $6.95 
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Appendix A – SystemVerilog Code: 
 
// Top level module connecting the i2s and FFTcore modules 

// state machine allows for correct timing of feeding output of i2s to input 

of fft 

module finalProject(input logic clk, reset, sd, 

        output logic [31:0] freqR, freqI); 

  

 logic sel, bclk, load; 

  

 typedef enum logic [2:0] {s0, s1, s2, s3} statetype; 

 statetype state, nextState; 

  

 always_ff @(posedge bclk, posedge reset) begin 

  if (reset) state <= s0; 

  else state <= nextState; 

 end 

  

  

 always_comb 

  case(state) 

   s0: if (~load) nextState = s1;  // want to stay in s0 until 

load isn't asserted 

     else nextState = s0; 

    

   s1: if (load) nextState = s1;  // stay in load until FFT is 

done loading 

     else nextState = s2; 

    

   s2: nextState = s3; // intermediary state to assert start 

    

   s3: nextState = s3; // stay in s3 for the rest of the 

process, done will be asserted and stop process 

    

   default: nextState = s0; 

 endcase 

  

  

 assign start = (state == s2);  // let FFT know when to start loading 

the data 

  

  

 logic [23:0] dataOut; 

 i2s micIn(clk, reset, sd, sel, bclk, load, dataOut); 

 fftCore fft(bclk, reset, start, load, {dataOut[23:0], 8'b00000000}, 

freqR, freqI, done); 

  

endmodule 

 

 

// I2S MODULE 

// module to drive signals for the i2s microphone 

module i2s(input logic clk, reset, sd, 

     output logic sel, bclk, load, 

     output logic [23:0] dataOut); 

      



 logic [19:0] prescaler;  // SERIAL CLOCK -- should run at 2MHz 

 logic [5:0] lrclk;  // LEFT-RIGHT CLOCK -- TRANSMIT LEFT CHANNEL WHEN 

LOW, RIGHT WHEN HIGH 

 logic [4:0] leftCounter, rightCounter;  // Might have to switch the 

bitwidth to avoid overflow 

 logic [23:0] dataReg; 

  

 // update the value of prescaler, runs at 3MHz 

 always_ff @(posedge clk) begin 

  if (reset) prescaler <= 0; 

  else prescaler <= prescaler + 246625; 

 end 

  

 assign bclk = prescaler[19]; 

  

  

 // sel should run at bclk / 64 = 46.9kHz 

 always_ff @(posedge bclk, posedge reset) begin 

  if (reset) lrclk <= 0; 

  else lrclk <= lrclk + 1; 

 end 

  

 assign sel = lrclk[5]; 

  

 assign load = ((sel && rightCounter >= 25 && rightCounter <= 31) || 

(~sel && leftCounter >= 25 && leftCounter <= 31)); 

  

 // updating rightCounter 

 always_ff @(posedge bclk, posedge reset) begin 

  if (reset) rightCounter <= 0; 

  else if (sel) rightCounter <= rightCounter + 1; 

  else rightCounter <= 0; 

 end 

  

  

 // updating leftCounter 

 always_ff @(posedge bclk, posedge reset) begin 

  if (reset) leftCounter <= 0; 

  else if (~sel) leftCounter <= leftCounter + 1; 

  else leftCounter <= 0; 

 end 

  

 // shift register to update dataReg 

 always_ff @(posedge bclk) begin 

  if (sel) begin 

   if (rightCounter >= 1 && rightCounter <= 18) 

    dataReg <= {dataReg[22:0], sd}; 

  end else begin 

   if (leftCounter >= 1 && leftCounter <= 18) 

    dataReg <= {dataReg[22:0], sd}; 

  end if ((rightCounter >= 19 && rightCounter <= 24) || 

(leftCounter >= 19 && leftCounter <= 24)) 

   dataReg <= {dataReg[22:0], 1'b0}; 

 end 

  

 assign dataOut = ((sel && rightCounter >= 25 && rightCounter <= 31) || 

(~sel && leftCounter >= 25 && leftCounter <= 31)) ? dataReg : dataOut; 



  

endmodule 

 

module testbench_fftCore(); 

 logic clk, reset, start, load, done; 

 logic signed [31:0] wd; 

 logic signed [15:0] outputReal, outputImag; 

 logic signed [31:0] testvectors[0:31]; 

  

  

 fftCore dut(clk, reset, start, load, wd, outputReal, outputImag, done); 

  

 always 

  begin 

   clk = 1; #5; clk = 0; #5; 

  end 

  

 logic [31:0] counter; 

 always_ff @(posedge clk)  

  begin 

   if (reset) counter <= 0; 

   else counter <= counter + 1; 

  end 

  

 assign wd = testvectors[counter]; 

  

 always_comb 

  begin 

   load  = (counter < 32); 

   start = (counter == 35); 

  end 

   

 initial 

  begin 

   $readmemh("inputs.txt", testvectors); 

   reset = 1; #10; reset = 0; 

  end 

   

endmodule 

 

 

// FFT CORE 

// Utilizes the lower level modules to perform the FFT 

module fftCore(input logic clk, reset, start, load, 

     input logic signed [31:0] wd, 

     output logic signed [15:0] outputReal, 

outputImag, 

     output logic done); 

      

 logic wen0, wen1, clear, rdsel; 

 logic [3:0] twiddleadr; 

 logic [4:0] adr0a, adr0b, adr1a, adr1b; 

 logic signed [15:0] twiddleReal, twiddleImag; 

 logic [31:0] ain, bin, aout, bout, rd0a, rd1a, rd0b, rd1b, wda, wdb; 

  

 // To load the data in 

 assign wda = load ? wd : aout; 



 assign wdb = load ? wd : bout; 

  

 // Substantiates the AGU 

 AGU agu(clk, reset, start, load, done, wen0, wen1, clear, rdsel, 

twiddleadr, adr0a, adr0b); 

  

 assign adr1a = adr0a; 

  

   assign adr1b = adr0b; 

  

 twiddleRom tw(clk, twiddleadr, twiddleReal, twiddleImag); 

  

 RAM r0r(clk, wen0, adr0a, adr0b, wda[31:16], wdb[31:16], rd0a[31:16], 

rd0b[31:16]); 

 RAM r0i(clk, wen0, adr0a, adr0b, wda[15:0], wdb[15:0], rd0a[15:0], 

rd0b[15:0]); 

 RAM r1r(clk, wen1, adr1a, adr1b, wda[31:16], wdb[31:16], rd1a[31:16], 

rd1b[31:16]); 

 RAM r1i(clk, wen1, adr1a, adr1b, wda[15:0], wdb[15:0], rd1a[15:0], 

rd1b[15:0]); 

  

 // Muxes for which bank to read 

 assign ain = rdsel ? rd1a : rd0a; 

 assign bin = rdsel ? rd1b : rd0b; 

  

 butterfly bf(ain[31:16], ain[15:0], bin[31:16], bin[15:0],  

     twiddleReal, twiddleImag,  

     aout[31:16], bout[31:16], aout[15:0], bout[15:0]); 

      

 // Assigns output from ain 

 assign outputReal = ain[31:16]; 

 assign outputImag = ain[15:0]; 

endmodule 

 

 

// BUTTERFLY UNIT 

// module to perform the recursive two-point transforms that build up the 32 

point FFT 

// given two 32-bit inputs along with a twiddle factor, outputs two 32-bit 

complex numbers as output 

module butterfly(input logic signed [15:0] ainr, aini, binr, bini, 

      input logic signed [15:0] twiddleReal, 

twiddleImag, 

      output logic signed [15:0] aOutReal, 

bOutReal, aOutImag, bOutImag); 

   

  logic signed [31:0] bwkReal, bwkImag; 

   

  assign bwkImag = binr * twiddleImag + bini * twiddleReal; 

  assign bwkReal = binr * twiddleReal - bini * twiddleImag; 

   

  // Outputs 

  assign aOutReal = ainr + bwkReal[30:15]; 

  assign aOutImag = aini  + bwkImag[30:15]; 

  

  assign bOutReal = ainr - bwkReal[30:15]; 

  assign bOutImag = aini  - bwkImag[30:15]; 



   

endmodule 

 

 

// TWIDDLE ROM MODULE 

// given a twiddle address, outputs the real and imaginary twiddle factors as 

specified in Slade's paper 

module twiddleRom(input logic clk,  

      input logic [3:0] twiddleAdr, 

      output logic signed [15:0] twiddleReal, 

twiddleImag); 

   

  logic [31:0] twiddleROM[0:15]; 

  logic [31:0] twiddle; 

   

  initial $readmemh("twiddleROM.txt", twiddleROM); 

   

 

  assign twiddle = twiddleROM[twiddleAdr]; 

   

  assign twiddleReal = twiddle >> 16; 

  assign twiddleImag = twiddle;   

endmodule 

 

 

// ADDRESS GENERATING UNIT 

// generates the addresses to determine where in RAM to store the processed 

data 

module AGU(input logic clk, reset, start, load, 

     output logic done, wen0, wen1, clear, rdSel, 

     output logic [3:0] twiddleadr, 

     output logic [4:0] adra, adrb); 

 typedef enum logic [2:0] {WAIT, LOAD, READ, WRITE, CLEAR, DONE} 

statetype;  // Might need a clear state in between read and write 

 statetype state, nextState; 

  

 logic [5:0] counter; 

 always_ff @(posedge clk) 

  begin 

   if (reset) counter <= 0; 

   else counter <= counter + 1; 

  end 

  

 logic [2:0] i, inext; 

 logic [4:0] j, jnext, jshift; 

  

 // Next state register 

 always_ff @(posedge clk, posedge reset) 

  if (reset) begin 

   state <= WAIT; 

   i <= 0; 

   j <= 0; 

  end else if (clear) begin 

   state <= nextState; 

   i <= 0; 

   j <= 0; 

  end else begin 



   state <= nextState; 

   i <= inext; 

   j <= jnext; 

  end 

  

 // Combination logic for nextState 

 always_comb 

  case(state) 

   WAIT: if (start) nextState = CLEAR; 

     else if (load) nextState = LOAD; 

     else nextState = WAIT; 

    

   LOAD: if (counter < 32) nextState = LOAD; 

     else nextState = WAIT; 

    

   READ: nextState = WRITE; 

    

   WRITE: if (i == 4 && j == 15) nextState = DONE; 

      else nextState = READ; 

       

   CLEAR: nextState = READ; 

       

   DONE: nextState = DONE; 

    

   default: nextState = WAIT; 

  endcase 

  

  

 // Combinational logic for incrementation 

 always_comb 

  case(state) 

   WRITE: 

    begin 

     if(j == 15) begin 

      jnext = 0; 

      inext = i + 1; 

     end else begin 

      jnext = j + 1; 

      inext = i; 

     end 

    end 

   default: 

    begin 

     inext = i; 

     jnext = j; 

    end 

  endcase 

   

 logic [4:0] cntRev; 

 bitreverse br1(counter[4:0], cntRev); 

 // Assign values of addresses according to AGU pseudocode in Table 3 of 

the Slade paper 

 assign jshift = j << 1; 

 assign adra = (state == LOAD) ? cntRev : ((jshift << i) | (jshift >> (5 

- i))) & 8'h1f; 

 assign adrb = (nextState == LOAD) ? cntRev : (((jshift + 1) << i) | 

((jshift + 1) >> (5 - i))) & 8'h1f; 



 assign twiddleadr = ((32'hfffffff0 >> i) & 4'hf) & j; 

  

 // Assign output based on states 

 assign wen0 = load | ((state == WRITE) && rdSel); 

 assign wen1 = ~rdSel && (state == WRITE); 

 assign done = (state == DONE); 

 assign clear = (state == CLEAR); 

  

 // Want to alternate between RAMs 

 assign rdSel = i[0]; 

  

  

endmodule 

 

 

// Dual ported RAM module 

// given two addresses and two 16 bit inputs, stores them in memory 

module RAM(input logic clk, wen, 

    input logic [4:0] adrb, adra, 

    input logic [15:0] wda, wdb, 

    output logic [15:0] rda, rdb); 

 

 logic [15:0] ram [0:31]; 

  

 always_ff@(posedge clk) begin 

  if (wen) begin 

   ram[adrb] <= wda; 

   ram[adra] <= wdb; 

   rda <= wda; 

   rdb <= wdb; 

  end  

  else begin 

   rda <= ram[adrb]; 

   rdb <= ram[adra]; 

  end 

 end 

endmodule 

 

module bitreverse(input logic [4:0] adr, 

      output logic [4:0] reversed); 

 assign reversed = {adr[0], adr[1], adr[2], adr[3], adr[4]}; 

endmodule 

 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
Appendix B – FFT and I2S Simulation: 
 

 
 

 
Appendix C – I2S Simulation: 
 



 
 
 
 
 
Appendix D – FFT Simulation: 
 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix E - C Code: 
 
// John Hearn & Kevin Kong 
// Microcontroller code for SPI interfacing with LED and FPGA 
//headers 
#include "STM32F401RE.h" 
#include <stdint.h> // for integer types (i.e., uint32_t) 
//pins for GPIO outputs 
#define MOSI 7  
#define SCLK 5 
#define DONE_PIN 8 
#define LOAD_PIN 9 
//define for SPI configurations 
#define clkdivide 0b101 
#define cpol 1 
#define ncpha 1 
// Size and indices of array LEDARR 
#define NUMLED 94 
#define RED 3 
#define GREEN 2 
#define BLUE 1 
#define GLOBAL 0 
#define mode0 1 
#define mode1 0 
#define mode3 4 
// Frames our LED strip into an array based on 9. Feature Description of 

datasheet 
uint8_t LEDARR[NUMLED][4]; 
int16_t fft[32][2]; 



uint8_t COLOR[4]; 

  
// Clears the LEDARR for future updates 
void clearLEDARR(){ 
    volatile uint8_t i; 
    volatile uint8_t j; 
    for( i=0; i < NUMLED; i ++){ 
        LEDARR[i][GLOBAL] = 0xE0; 
        for (j = 1; j < 4; j++){ 
            LEDARR[i][j] = 0x00; 
        } 
    } 
} 
// Structuring the LEDARR to what we want to send 
void setLED(uint8_t ledNum, uint8_t global, uint8_t red, uint8_t green, 

uint8_t blue){ 
    LEDARR[ledNum][GLOBAL] = (0xE0 | global);   // Global always starts 

with 111 
    LEDARR[ledNum][RED] = red; 
    LEDARR[ledNum][GREEN] = green; 
    LEDARR[ledNum][BLUE] = blue; 
} 

  
// Starts SPI transmission 
void updateLEDSPI(){ 
    // Start Frame 
   int i; 
   for(i=0;i<4;i++){ 
        spiSendReceive(0x00); 
   } 
    // LED Frame 
    for (i = 0; i <NUMLED; i ++){ 
            spiSendReceive(LEDARR[i][GLOBAL]); 
            spiSendReceive(LEDARR[i][BLUE]); 
            spiSendReceive(LEDARR[i][GREEN]); 
            spiSendReceive(LEDARR[i][RED]); 
        } 
    // End Frame 
    for(i=0;i<4;i++){ 
        spiSendReceive(0xFF); 
   } 
} 

  
// Determines pattern from input 
int getPattern(uint8_t blue, uint8_t red, uint8_t green){ 
    int i; 
    int x= 0; 
    int isMode0 = 0; 
    int isMode1 = 0; 
    int isMode3 = 0; 
    int currPattern; 

  
    while (1) { 



        // wait for input 
        while (!isMode0 && !isMode1 && !isMode3) { 
            isMode0 = digitalRead(GPIOA, mode0); 
            isMode1 = digitalRead(GPIOA, mode1); 
            isMode3 = digitalRead(GPIOA, mode3); 
        } 
         
        if (isMode0) { 
            currPattern = 0; 
        } else if (isMode1) { 
            currPattern = 1; 
        } else if (isMode3) { 
            currPattern = 3; 
        } 
        break; 
    } 
    // Pattern 0 is white LED 
    if (currPattern == 0) { 
      for (i = 0; i < NUMLED; i++) { 
            if((x + i) % 2 == 0) { 
                red = 200; 
                green = 0; 
            } else { 
                red = 0; 
                green = 200; 
            } 
            setLED(i,02,red,green, 0 ); 
            updateLEDSPI(); 
        } 
        x++; 
      // Pattern 1 to a moving color on other color 
    } else if(currPattern == 1) { 
        for (i = 0; i < NUMLED; i++) { 
            setLED(i, 6 ,200, 0, 178); 
            updateLEDSPI(); 
            delay_micros(TIM2, 800); 
            setLED(i+4, 5 ,190, 0, 0); 
            updateLEDSPI(); 
        } 
       
      // Pattern 2 alternating colors 
    } else if (currPattern == 3) { 
        for (i=47;i<NUMLED; i++) { 
            setLED(i, 4, 0, 0, 250); 
            setLED(94 -i, 5, 124, 0, 0); 
            updateLEDSPI(); 
            delay_millis(TIM2, 20); 
            setLED(i-47, 4, 0,0, 250); 
            setLED(NUMLED+ 47-i,4,200, 0, 0); 
        } 
    } 
    return currPattern; 
} 

  



void playPattern(int pattern, uint8_t blue, uint8_t red, uint8_t green) { 
    int i = 0; 
    if (pattern == 0) { 
        int x = 0; 
        for (i = 0; i < NUMLED; i++) { 
            if((x + i) % 2 == 0) { 
                red = 200; 
                green = 0; 
            } else { 
                red = 0; 
                green = 200; 
            } 
            setLED(i,02,red,green, 0 ); 
            updateLEDSPI(); 
        } 
        x++; 
    } else if (pattern == 1) { 
        for (i = 0; i < NUMLED; i++) { 
            setLED(i, 6 ,200, 0, 178); 
            updateLEDSPI(); 
            delay_micros(TIM2, 750); 
            setLED(i+4, 5 ,190, 0, 0); 
            updateLEDSPI(); 
        } 
    } else if (pattern == 3) { 
        for (i=47;i<NUMLED; i++) { 
            setLED(i, 4, 0, 0, 250); 
            setLED(94 -i, 5, 124, 0, 0); 
            updateLEDSPI(); 
            delay_millis(TIM2, 20); 
            setLED(i-47, 4, 0,0, 250); 
            setLED(NUMLED+ 47-i,4,200, 0, 0); 
        } 
    } 
} 

  
int main(void){ 
    //SPI SET UP 
    configureFlash(); 
    configureClock(); 
    RCC->AHB1ENR.GPIOAEN = 1; 
     
    spiInit(clkdivide,cpol,ncpha); 
    // TIMER SET UP 
    RCC->APB1ENR |= (1 << 0); 
    initTIM(TIM2); 
    clearLEDARR(); 
    int x; 
    uint8_t green; 
    uint8_t red; 

  
    pinMode(GPIOA, mode0, GPIO_INPUT); 
    pinMode(GPIOA, mode1, GPIO_INPUT); 
    pinMode(GPIOA, mode3, GPIO_INPUT); 



  
    while(1) { 
        int currentPattern = getPattern(0, 0, 0); 
        while (!digitalRead(GPIOA, mode0) && !digitalRead(GPIOA, mode1) 

&& !digitalRead(GPIOA, mode3)) { 
            playPattern(currentPattern, 0, 0, 0); 
        } 
    }  //END WHILE 
}  //END MAIN 


