Real-Time Audio Spectrum Analyzer — Final Report
Weston Miller & Ingrid Tsang

Abstract

The goal of this project is to build a real-time audio spectrum analyzer. The system performs
Fourier analysis on a real-time audio signal from a microphone using the FPGA and displays the
spectrum of the audio signal on an LCD. The microcontroller is responsible for sampling data
from the microphone, sending and receiving data from the FPGA, and updating the spectrum on
the LCD.

Introduction

Growing up using applications such as Windows Media Player and QuickTime, there would be
various graphs on the side providing information about the audio signal being captured by the
application. Captivated by these curious moving lines as young children, we would play different
sounds with the computer and make noises to see how the graphs changed. As we entered
college and began taking engineering courses, we learnt that these curious moving lines were in
fact outputs of Fourier analysis, which helps to determine the frequency composition of a given
signal. For audio signals, this allows us to perform tasks such as visualizing different pitches
present and their intensities, performing filtering to remove noise from a signal, and audio
recognition. Ignited by this interest, we decided to recreate the frequency versus amplitude
graphs we saw as children for this project, where we will build a real-time audio spectrum
analyzer.

Audio data is first sampled from the electret microphone through the microcontroller’s
analog-to-digital converter (ADC), with the sampling frequency controlled by a timer on the
microcontroller. The audio data is stored in the microcontroller’s memory from the ADC using
direct memory access (DMA) until all the samples are collected. The microcontroller then sends
the audio data through SPI to the FPGA, which implements a FFT hardware accelerator. After
the FPGA calculates the FFT, the output is sent through SPI back to the microcontroller. The
microcontroller takes the FFT output and converts it to a pixel array, which is sent through SPI to
the graphic LCD to display the frequency versus amplitude graph on the display. The system
block diagram is shown in Figure 1.
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Figure 1: System block diagram



Schematics

The schematic diagram for the breadboarded circuit is shown in Figure 2, and the pin
assignments for the FPGA are shown in Table 1.
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Figure 2: Schematic of breadboard circuit
Node Name Direction Location
CLK Input PIN_H6
DONE Output PIN_H5
LOAD Input PIN_K11
SCK Input PIN_H4
SDI Input PIN_J1
SDO Output PIN_J2

Table 1: Pin Assignments for the FPGA




New Hardware
There are two pieces of new hardware used in the system: the electret microphone and the
graphic LCD.

Electret Microphone

The breakout (as shown in Figure 3) consists of a MAX4466 amplifier with an electret
microphone, and the gain can be adjusted using a small trimmer pot on the back of the
breakout.

Figure 3: Electret microphone with amplifier (ADA 1063) [4]

The electret microphone is used to capture (analog) audio signals as the input to the system,
which is sent to the microcontroller for further processing. Interfacing with the microphone was
performed using the microcontroller’'s ADC to convert the analog signal from the microphone to
a digital signal that can be processed by the rest of the system.

Graphic LCD
The 48 by 84 pixel graphic LCD, which comes from an old Nokia 5110, is mounted on a board
and with a PCD8544 controller. Figures 4 and 5 show the graphic LCD and the pinouts.
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Figures 4-5: Graphic LCD with pinouts on the back of the board (LCD 10168) [6]

The LCD is used to display the spectrum of the input audio signal as a frequency versus
amplitude graph. The dominant frequency in the audio signal is also displayed on the side of the
graph (as shown in Figures 16-19).



The microcontroller (controller device) communicates with the LCD (peripheral device) through
SPI. The D/C pin (pin 5 in Figure 5) allows the microcontroller to toggle between communicating
data and commands. To begin interfacing with the LCD, the first step is to reset the LCD using
the RST pin (pin 4 in Figure 5) and then configure the settings by sending commands to the
LCD, including choosing the instruction set, the addressing mode and the display mode. For this
system, vertical addressing was selected, as the main purpose of the LCD is to display the
frequency versus amplitude graph as a series of bars, thus it is more logical to populate the
pixel array by column. The microcontroller then sends data to the LCD 8 bits at a time, with each
bit representing one pixel being turned on or off. It is possible to configure specific 8-bit blocks of
pixels, however this was not needed for this system as for each new FFT output, the entire
display is updated.



Microcontroller Design

The microcontroller in the system acts as a coordinating device — responsible for sampling
data from the microphone, sending and receiving data from the FPGA, and updating the
spectrum on the LCD — as shown in blue in Figure 1.

The first step for the microcontroller is to set up the initial configurations, including for the GPIO
pins, the SPI, the direct memory access (DMA), the analog-to-digital converter (ADC) and the
graphic LCD. After that, the microcontroller enters an infinite loop that repeatedly executes a
series of functions to sample and store the audio data, send the audio data to the FPGA,
receive the FFT output from the FPGA, convert the FFT output to the pixel array, and send the
pixel array to the graphic LCD.

To sample the audio data from the microphone, the microcontroller’s ADC is used. The sampling
frequency is controlled by one of the peripheral timers. To collect the audio data samples, an
ADC conversion is performed every time the timer’s counter reaches the desired threshold. The
ADC is configured to be in DMA mode, so once an ADC conversion is completed, the data in
the ADC’s data register is stored in the specified location (the audioData array). For this
system, the sampling frequency was chosen to be 3200 Hz (but this can be easily changed) and
32 samples are collected, due to the design of the FFT (see the “FPGA Design” section).
Therefore, the system can display audio signals up to 1600 Hz (the Nyquist frequency is

=2%- = 1600 Hz) with a bin width of 100 Hz (each bin is 73> = 100 Hz wide).

The next step in the infinite loop for the microcontroller is to send and receive data from the
FPGA, which performs the FFT. The microcontroller and FPGA communicate via SPI, as per the
transmission interface specified by the FFT SPI module (see the “FPGA Design” section). The
LOAD pin is used to communicate when data for the FFT is being between the microcontroller
and the FPGA, and the DONE pin is used to communicate when the FFT is complete and the
data is ready to be sent from the FPGA to the microcontroller. The output from the FFT is a
series of complex numbers in Q15 (further explained in the “FPGA Design” section). Therefore,
before further processing the microcontroller converts the real and imaginary components of
each complex number into doubles and then computes the magnitudes of each of these
complex numbers to determine the amplitudes at each frequency.

Lastly, the microcontroller also creates the pixel array, which is sent through SPI to the graphic
LCD. As discussed in the “New Hardware” section, vertical addressing is used for this system
(i.e. the pixels are sent to the LCD by column). The function first converts the FFT output to the
frequency versus amplitude bar graph. Thus for each frequency, the pixel array is populated
based on the amplitude corresponding to the frequency, normalized by a fixed amplitude
determined empirically (and can be easily changed). The second part of the function is
responsible for displaying the dominant frequency as text on the right side of the bar graph. This
is done by storing the digits 0-9 and characters ‘H’ and ‘z’ as arrays of pixels, identifying the
dominant frequency (that with the highest amplitude) from the FFT output, and then for each
digit or character, adding each column of pixels iteratively to the pixel array. Finally, the rest of



the pixel array is populated with Os to overwrite the pixels from the previous array loaded onto
the LCD.

A bare-metal design was used for this system, performing the SPI communication with the
FPGA and LCD in series (instead of in parallel). This resulted in reduced complexity, as
interrupts do not have to be used. Through testing, we also found that even with this design,
there was no perceivable lag between the microphone capturing the audio signal and the output
on the display, thus further justifying this design choice. Additionally, in the implementation of the
microcontroller operations, each function was kept modular, which allowed for smoother unit
testing of the system to identify parts of the system that needed to be debugged. For example,
to unit test the conversion of the FFT output to the pixel array and the SPI communication with
the LCD (especially before the FFT hardware accelerator was complete), test FFT output was
used and the operation of this module was verified by comparing the output on the display to the
expected output generated by a Python program.



FPGA Design

The FFT hardware accelerator consists of two modules: the “FFT core” which is responsible for
performing the FFT on loaded data and the “SPI module” which handles the SPI communication
with the microcontroller. The top-level block diagram of the 32-point FFT module is shown in
Figure 6.
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Figure 6: Top-level block diagram of FFT module

FFT Core
At its root, the FFT is a series of “butterfly” operations. The individual butterfly operation is
described by the following pair of equations:

A+ o *B (1)

A+ o *B 2)

Av
Bl

Where " is the corresponding “root of unity”. A schematic of an 8-point FFT is shown in Figure
7. For an 8-point FFT, there are 12 butterfly operations that need to be performed (% logzN). It

is useful to identify the specific butterfly operation in terms of its i and j index as identified in
Figure 7." Importantly, each butterfly only depends on the results from the previous level. This
means that one can compute each butterfly sequentially if the outputs are stored. Moreover, the
order that one performs the butterfly operations at each level does not matter as long the results
are stored and completed before the butterfly of the next level.

Given this insight, a relatively straightforward way to implement the FFT in hardware is to have a
butterfly module that performs the butterfly operation, a read-write data structure to store the
inputs/outputs to each butterfly operation, a read-only data structure that stores the “roots of

' For a more complete description and derivation of the FFT, see [2].



unity”, and an “address generation unit” that generates the addresses to retrieve and store
values from/in the data structures. This implementation of the FFT follows this general
implementation, as shown in the top-level schematic in Figure 8.
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Figure 7: Schematic of the butterfly operation. Each cross represents a butterfly operation.



FFT Core Module

AGU
A Address Read-Write Data Structure
B Address —\—
Bank Write A Address
w* Address B Address
Bank Write A Data Out
B DataOut }—
ADataIn
Butterfly Unit
B Dataln
A A
B B’
Wk

ROM data out

Read address

Roots of Unity ROM

Figure 8: Top-level schematic of the FFT core

Butterfly Unit

The operation of the butterfly unit is specified by (1) and (2) above. This arithmetic was specified
combinationally. The resulting block diagram is shown in Figure 9. There are a couple of
subtleties worth noting regarding the implementation of the butterfly unit. Firstly, A, B, and w* are
generally complex. This means that each input must have a real and imaginary part, and
multiplication requires four individual multipliers. Secondly, all of the signals are represented
using Q15, similar to Slade in [1]. Q15 is a desirable number format because the product of two
Q15 numbers is between -1 and 1. Furthermore, it is easy to represent the product as a Q15
number by simply shifting out the least significant bits of the product.
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Figure 9: Schematic of butterfly unit

Read-Write Data Structure

Figure 10 shows a schematic of the memory structure. Because memory cannot be read from
and written to on the same clock cycle, there are two memory banks and the module alternates
reading from one and writing to the other at every FFT level. Theoretically, each memory bank
consists of two (one for real/imaginary data each) dual-port RAM blocks. However, the current
implementation uses registers instead of RAM, as the read address line of the RAM is
registered, which would add a single clock cycle delay between the read addresses and the
data out delay. Figure 11 shows the block diagram of a memory bank.

The time-series data is loaded into data bank 1 in bit reversed order, then the transformed data
will end up in data bank zero in normal order (address 0 corresponds to X(0), etc.). Data is
loaded into data bank 1 by asserting the “load” signal, and on the positive clock edge, the data
on the Load Data lines will be loaded into the address at the bit reverse of the index line.

Roots of Unity ROM

The roots of unity ROM is a 16 x 32 bit read-only memory that contains all of the roots of unity
(w° through w'®) in Q15 format. The most significant bits correspond to the real part and the
least significant bits correspond to the imaginary value. The address is the power of the root of
unity (e.g. w® will be stored in address zero).
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Figure 10: Schematic of the memory structure
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Figure 11: Schematic of a data bank
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Address Generation Unit

The general strategy for address generation is outlined by Cohen in [3]. In short, if we do the
butterfly operations in the order described by Cohen, there is a relatively simple relationship
between the level (i) and j index and the addresses for A and B:

A_address = Rotate;(27%), i)
B_address = Rotates(2*j+1, i)

Furthermore, the correct root of unity address for butterfly (i,j) is found by zeroing out the lowest
(4 - i) bits of j :
K=j&[5b11111 << (5 -i-1)]

We can keep track of i and j for the 32-point FFT with a single 7-bit counter. The lowest 4 bits

are the j counter and the top 3 bits are the i counter. Figure 12 shows a schematic of the
address generation unit.

agu:agu

E rotateLeft:aRotate
7:5 5[2.0] dout[4.0] A_address[4.0]
< din[4.0]
Equalo
— — out FFTd
315 B[2.0] -
rotateLeft:bRotate
ThOoan  Add1 7:5 5[2.0] H dout[4.0] B_address[4.0]
Al4. m OUT[4.0] din[4.0]
I 5'h1 Bla.o]
= b }
i 1 twiddle_address~0
twiddleMaskGenerator:tMG 0
FFT i ~
mn 7:5 i2.01 mask[3.0] 1 Ll SEEERE=]
count~[7..0] > ‘
1h0 Addo -
g count(7..0] 5 twiddle_address~2
81 Bi7.0] D 3
clk __Lax aq 5 | Bankwrite
8hofgae " twiddle_address~3 twiddle_address([3.0]
3

Figure 12: Schematic of the address generation unit. The twiddleMaskGenerator and the
RotatelLeft modules are combinational logic blocks.
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FFT Core Function

To validate the functionality of the FFT core, a 32-point FFT was performed on the same signal
(an impulse at n = 3) using Matlab’s FFT function and using a ModelSim simulation of the FFT
Core module. Figure 13 shows the results of these simulations. There is good agreement
between Matlab FFT and the transform generated by the FFT Core Module.
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Figure 13: Comparison of FFT of test signal using Matlab and ModelSim

FFT Core Module Interface
The inputs and outputs of the FFT core module are:
e Inputs:
o ClIk - system clock that drives all synchronous modules
o 2xloadData (16 bit) busses (1_r, 1_i)
o 1x Index (5’bit)
o Load - control signal driven high to load/read data from FFTcore
o runFFT - control signal driven high to run FFT after load/read is completed
e Outputs:
o 2xreadData (16 bit) busses (1_r, 1_i,)
o FFTdone - signal goes high when FFT has finished

The FFT can either be in a done state or a running state. When the FFT is in a done state, the
results of the previous transform can be read out simultaneously with the writing in of new data
values. To do this, load must be asserted. When load is asserted, data is loaded into the data
bank on the positive clock edge; the data on the Load Data lines will be loaded into the
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addresses on the Load Addresses lines. Simultaneously, the data at the address on the read
line will appear on the data lines to be readData lines. Importantly, there are two read/load
addresses that are loaded/read simultaneously. This means that the data must be loaded in and
read out in pairs. To have the FFT core run after loading is complete, drive load low and runFFT
high. RunFFT must be driven high continuously until the FFTdone signal is asserted.

SPI Module

To load data into the FFT Core module, the SPI module must drive the index and loadData
lines. To read data from the FFT core, the SPI module must be able to take in the read data.
Figures 14 and 15 show block diagrams of the SPI module, which is built around a 32-bit shift
register. The shift register shifts on the negative clock edge, and the SDlI is strobed on the rising
edge. This corresponds to a clock polarity of 0 and a clock phase of 0. The control signal
generator is responsible for capturing the index, loading the read data into the shift register, and
then capturing the load data after the read data is shifted out, as shown in Figure 15. The
control signal generator is built around a counter, which keeps track of the number of negative
clock edges so that the SPI module can correctly interpret the SPI communication.

The SPI module specifies the following 40-bit transmission protocol:
e Microcontroller sends: {5’b index, 3'b0, MSB real data, LSB real data, MSB imaginary
data, LSB imaginary data}
e Microcontroller receives: {8’b X, MSB real data, LSB real data, MSB imaginary data, LSB
imaginary data}

Sending the index first allows time for the data being read out of the FFT core to arrive on the
Read Data line before it needs to be loaded into the shift register. Care was taken to ensure that
the index and load data signals are properly synchronized so they do not cause metastability
problems. For the index, this was achieved by having an “async” capture register that is clocked
by sck and a “sync” index register that is clocked by clk. The enable for the synchronized clk
index register only goes high after the “async” register has been settled.

To achieve synchronization for the Load Data line, the enable for the Load Data capture register
is only high for one clock cycle when a synchronized count signal reads 40. However, this
strategy only works if the frequency of sck is less than % of the frequency of clk. Because we
used the 12 MHz oscillator on the FPGA as the system clock for the FFT module, this means
the maximum sck frequency would be 6MHz. In practice, the sck frequency is set significantly
lower at ~1.3 MHz.

14
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Results

The system was able to successfully meet all the specifications outlined in the project proposal:
e Sample audio from a microphone
e Perform Fourier analysis on the audio signal using the FPGA
e Display the spectrum of the audio signal on a graphic LCD

This behavior was verified through extensive testing, as shown in Figures 16-19 and videos
linked below. We played different notes in succession, and observed that the frequency versus
amplitude graph and dominant frequency displayed changed with the music, with no perceptible
lag between the audio signal and the display. The graph also clearly reflects different sound
volumes, such that when the music is played more softly, the amplitudes are correspondingly
smaller on the graph. Additionally, we also played various pure tones, and observed that there
was a clear dominant frequency (more than one in the case where the frequency did not fit
exactly into one of the 100 Hz bins) that corresponded to the frequency of the tone.

Figures 16-19: The spectrum analyzer in operation

Video Links
e Playing “Drop the Game” (link)
e Playing a series of pure tones (link)
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https://drive.google.com/file/d/1TmDIu0PycONuM38hrR6Fz9aX9EJW_S4a/view?usp=sharing
https://drive.google.com/file/d/1t0lCJ161QOumPV0jrSifS5MVEMfEs-gw/view?usp=sharing
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Bill of Materials

Item Vendor Part Number | Quantity | Unit Price | Total Price

MAX1000 Trenz TEIO001-03-0 | 1 $26.66 $26.66
Electronic | 8-C8

Nucleo-F401RE Mouser 1 $13.83 $13.83

Electret Microphone | Adafruit ADA1063 22 (1)%6.95 | $16.63

Amplifier - MAX4466 (1) $9.68

with Adjustable Gain

Graphic LCD 84x48 | SparkFun | LCD-10168 1 $7.95 $7.95

- Nokia 5110

Total $65.07 + shipping

2 Two microphones were purchased due to extenuating circumstances. Only one microphone is used in
the system.
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Appendix A: FPGA Code
FFTcore and top level module:

‘timescale 1lns/lns

runFFT;
FFTdone;
rst;
load;
[4:0] loadAddress, readAddress;
[15: loadData r, loadData i;

[15¢ readData r, readData i;

[15: realData [31:0];
[15: imaginaryData [31:0];

finished;

FFTcore dut (clk, runFFT, load, loadAddress, readAddress, loadData r,

FFTdone, readData r, readData 1i);

initial

rst = 1'bl;
runFFT = 1'b0;
clk = 1'b0; #5;
clk = 1'bl; #5;
runFFT = 1'bl;
rst = 1'b0;

loadbata i,




load = 1'bl;

clk = 1'b0; #5;
clk = 1'bl; #5;
runFFT = 1'b0;

initial
forever
clk
clk

initial

if ( 3==3)
realData[j] <= 16'h07ff;

imaginaryData[j] <= 16'h0000;

lse
realData[j] <= 16'h0000;

imaginaryData[j] <= 16'h0000;

i = 1'b0;
finished = 1'b0;

always @ ( clk)
if (1 < 32 && ~FFTdone)
readAddress = 1[4:0];
loadAddress = {readAddress[0], readAddress[1l], readAddress[2],
readAddress([3], readAddress[4]};

loadData r = realData[readAddress];

loadData i imaginaryData[readAddress];

=1+ 1;




else 1if (i == 32 && ~FFTdone)
runFFT = 1'bl;
load = 1'b0;

i =1+ 1;

else 1f (FFTdone & ~finished)
runFFT = 1'bO0;
load = 1'bl;
i = 1"'b0;
finished = 1'bl;
readAddress = 1[4:0];
realData[readAddress] = readData r;
imaginaryData[readAddress] = readData 1i;

i = i+1;

(finished && i < 32)
readAddress = 1[4:0];
#2;

realData[readAddress] = readData r;

imaginaryData[readAddress] = readData 1i;

i=1i+ 1;

else if (finished && i > 31)

Sstop () ;

endmodule




spectrum analyzer (input clk,

input sck,
input sdi,
sdo,

load,

output
input
output
loadDone;
[4:0]

loadAddress, readAddress;

[15:0] loadbata r,

[15:0] readData r,

[31:0] loadData, readData;

loadHalfSync, loadSync;

always ff Q( clk)

loadHalfSync <= load;
loadSync <= loadHalfSync;

FFTcore core(clk, loadSync, loadAddress,

FFTdone, readData r, readData i);

sck, sdi, loadSync,

onePoint spi spi (clk,

assign loadAddress = {readAddress[0],

readAddress[3], readAddress[4]};

assign loadData r = loadData([31:16];

assign loadData i = loadbData[15:0];
s5sign readData = {readData r,

endmodule

readAddress|[1],

FFTdone) ;

loadData i;

readData i;

readAddress, loadData r,

readData, sdo,

readData 1i};

readAddress,

loadData i,

readAddress (2],

loadbData) ;



FFTcore (input clk,
input load,
input : loadAddress, readAddress,
input loadData r, loadData i,
output FFTdone,

output readData r, readData 1i);
BankWrite;

[4:0] A address, B address;
[3:0] twiddle address;

wreBl, wreBO;

[15:0] realw, imaw;
[15:0] reall, imagl, real2, imag2, reall , imagl , real2 , imag2 ;

[15:0] reallbankl, imaglbankl, real2bankl, imag2bankl, reallbankO,
imaglbank0O, real2bank0, imag2bank0;

[15:0] bankldatal r, bankldatal i, bankldata2 r, bankldata2 i;

twiddle rom trom(twiddle address, realw, imaw);

butterfly bfu(reall, imagl, real2, imag2, realw, imaw, reall , imagl , real2 ,

imag2_);

agu agu(clk, runFFT, A address, B address, twiddle address, FFTdone, BankWrite);

wreB1A BankWrite || load;
wreB1B BankWrite && ~load;
wreBOA (~BankWrite && ~load):;

assign wreBOB wreBOA;

[4:0] bankOAddress 1, bankOAddress 2, banklAddress 1, banklAddress 2;

assign bankOAddress 1 = load ? readAddress : A address;




assign bankOAddress 2 B address;
banklAddress 1 load ? loadAddress : A address;
banklAddress 2 B address;

bankldatal r load ? loadbata r : reall ;
bankldatal i load ? loadData i : imagl ;
bankldata2 r real2 ;

bankldata2 i imag2 ;

BankWrite ? reallbank0O : reallbankl;
BankWrite ? real2bank0 : real2bankl;
BankWrite ? imaglbank0O : imaglbankl;
BankWrite ? imag2bank0 : imag2bankl;

data bank bankO (clk, wreB0OA, wreBOB, bankOAddress 1, bankOAddress 2, reall ,

imagl , real2 , imag2 , reallbank0O, imaglbank0O, real2bank0O, imag2bankO) ;

data bank bankl (clk, wreBlA, wreB1B, banklAddress 1, banklAddress 2, bankldatal r,
bankldatal i, bankldata2 r, bankldata2 i, reallbankl, imaglbankl, real2bankl,
imag2bankl) ;

assign readData r reallbankO;

assign readData i imaglbankO;

clk)
(load) isDone <= 1'b0O;

else 1f (FFTdone) isDone <= 1;

assign runFFT = (~isDone && ~load);

endmodule




twiddle rom(input [3:0] address,

output [15:0] realw, imaw);

[31:0] rom[1l5:0];

initial $readmemh ("twiddle rom.txt", rom);

assign realw = rom[address][31:16];

assign imaw = rom[address] [15:0];

endmodule

data bank (input clk, wreA, wreB,
input [4:0] A Address, B Address,
input [15:0] ArDat, AiDat, BrDat, BiDat,
output [15:0] Ar out, Ai out, Br out, Bi out);
clkEn = 1'bl;
dataRAMhomeMade realRAM(A Address, B Address, clk, ArDat, BrDat, wreA,

Ar out, Br out);

dataRAMhomeMade imagRAM (A Address, B Address, clk, AiDat, BiDat, wreA,

Al out, Bi out);

endmodule

dataRAMhomeMade (input [4:0] addressl, address?2,
input clk,
input [15:0] wdl, wd2,
input wel, we2,
output [15:0] rdl, rd2);
[15:0] RAM[31:01;

RAM[addressl];
assign rd2 RAM[address?2];

always ff @( clk)




endmodule

if (wel) RAM[addressl] <= wdl;
if (we2) RAM[address?2] <= wd2;

butterflyTestBench () ;

ima2_;

[15:0] reall, imal, real2, ima2, realw,

butterfly dut( reall, imal, real2, ima2, realw, imaw,

ima2 );

initial

endmodule

reall =16'b0;
real2 =16'h7fff;
imal =16'b0;
ima?2 =16'b0;
imaw = 16'bO0;
realw =16"h7fff;
#10;

reall =16'b0000000101000111;
imal =16'b0000001010001111;
real?2 =16'h03d7;

ima2 =16'hfeb8;

imaw = 16'h471c;

realw =16'h6a6d;

#10;

imaw, reall ,

reall ,

imal ,

imal , real2 ,

real2 ,




butterfly (input [15:0] reall, imal, real2, ima2,

input [15:0] realw, imaw,

output [15:0] reall , imal , real2 , ima2 );

[31:0] multl, mult2, mult3, mult4;
= real2*realw;

= ima2*imaw;

= realw*ima?2;

= imaw*real?2;

[31:0] mult real, mult ima;

1 mult real = (multl([31:0] - mult2[31:0]);
mult ima = (mult3[31:0] + multd4([31:0]);

reall = reall + mult real[30:15];

imal = imal + mult ima[30:15];

real2 = reall - mult real([30:15];
ima2 = imal - mult ima[30:15];

endmodule

AGUtestbench () ;
clk, rst, runFFT, FFTdone, BankWrite;
[4:0] A address, B address;
[3:0] twiddle address;

agu dut (clk, runFFT, A address, B address, twiddle address, FFTdone, BankWrite);




rst = 1'bl; #5;
runFFT = 1'b0O;
#5;

initial
forever
clk = 1'b0; #5;
clk = 1'bl; #5;

rst = 1'b0;
runFFT = 1'bl;

1f (FFTdone)
$stop () ;

endmodule

agu (input clk, runFFT,
output [4:0] A address, B address,

output [3:0] twiddle address,

output FFTdone, BankWrite);

[7:0] count;
always ff @(




(!runFFT) count <= 8'b0;

else 1f (runFFT) count <= count+8'bl;

[4:0] arotIn, brotlIn;
assign arotIn = {j, 1'b0};

assign brotIn = arotIn + 5'bl;

rotatelLeft aRotate (arotIn, i, A address);
rotateLeft bRotate (brotIn, i, B address);

[3:0] twiddleMask;
twiddleMaskGenerator tMG (i, twiddleMask) ;
assign twiddle address = twiddleMask[3:0]

assign BankWrite = i[0];

justStarted;
wasRunFFT;

finished;

always ff @( clk)
wasRunFFT <= runFFT;
justStarted <= runFFT & ~wasRunFFT;

always ff @( clk)
if (justStarted) finished <= 1'b0;
else if (i==3'b101) finished <= 1'bl;




sign FFTdone = finished;

endmodule

rotateleft (input
input

output

always comb

3'b000 : din;
3'b001 : {din 0], dinf[41]1};

0], din[4:31};
0], din[4:2]1};

], din[4:1]};

3'b011 : {din
3'b100 : {din
3'b101 : din;
3'b110 : {din[3:0], din[4]};

3'blll : {din[2:0], din[4:3]1};

default: din;

[3
3'b010 : {din[2:
[1
[0

endcase

endmodule

twiddleMaskGenerator (input

output

always comb




case (1)
3'b000 : 4'0000;
3'b001 : 4'1000;
3'b010 : 4'p1100;
3'b011 : 4'p1110;
3'b100 : 4'pb1111;
default: 4'b0000;

endcase

SPI module:

‘timescale 1lns/lns

onePoint spi TestBench () ;

clk, sck, cs, MISO, MOSI, MISOcapture;
[4:0] index;

[31:0] readData, loadData;

[31: memBank0[31:0], memBankl1[31:0];
1393 master buffer;

[31: misoEDdata[31:0];

onePoint spi dut (clk, sck, MOSI, cs, readData, MISO, index, loadData);

i1 € 328 darr)

memBankO[1][31:16]
memBankO[1][15:0]




sck = 1'b0;
cs = 1'bl; #5;
cs = 1'b0; #5;
cs = 1'bl;

initial
forever
clk
clk

always @ ( clk)
readData = memBankO[index];

memBankl [index] = loadData;

sign MOSI = master buffer[39];

initial

j = 0; J < 32; j++)

master buffer = {j[4:0], 3'b0, j[15:

s = 0; s < 40; s++)

sck = 1'bl;

MISOcapture
#20;

sck = 1'b0;

master buffer = {master buffer[38:0], MISOcapture};
#20;




misoEDdata[]j[4:0]] = master buffer[31:0];

endmodule

onePoint spi (input clk, sck, sdi, cs,

input [31:0] readData,
output sdo,
output [4:0] index,
output [31:0] loadbata);

sdi strobed, notCaptured;

[31:0] shift register;

[5:0] sCount;




always ff @( sck)

sdi strobed <= sdi;

sck)

if (sCount == 7) shift register <= readData;

else shift register <= {shift register[30:0], sdi strobed};

[4:0] asyncIndex;

sck)
(~cs) asyncIndex <= 5'b0;

se if (sCount == 5) asyncIndex <= shift register[4:0];

always ff Q( clk)

if (~cs) index <= 5'bO0;

else if (sCountSync > 5) index <= asyncIndex;

assign sdo = shift register[31];

always ff @( clk)
if (sCountSync == 40 && notCaptured)
loadData <= shift register;

notCaptured <= 1'b0;




else if (sCountSync == 2) notCaptured <= 1'bl;

(~cs) loadData <= 32'h0;

('cs)
sCount <= 6'b0;

else 1f (sCount == 40)

sCount <= 6'b000001;

1se

sCount <= sCount + 6'bl;

[5:0] sCountHalfSync, sCountSync;
always ff Q( clk)
sCountHalfSync <= sCount;

sCountSync <= sCountHalfSync;

endmodule

Top Level Testbench:

‘timescale 1ns/lns

spectrum analyzerTestBench () ;
clk, sck, sdi, sdo, load, FFTdone, MISOcapture;

delay;

spectrum analyzer dut( clk, sck, sdi, sdo, load, FFTdone):;




[15:0] loadbData r [31:0], loadData i[31:0];

[15:0] readData r [31:0], readData i[31:0];
[39:0] sdiBuffer;

[4:0] index;

assign sdi = sdiBuffer[39];

initial
[5:0] J = 0; j < 32; j++)
(3 = 3)
loadData_r[j] <= 16"hOOff;
loadbData i[j] <= 16'h0000;

loadData r[j] <= 16'h0000;

loadData i[j] <= 16'h0000;

1'b0; #2;
= 1'bl;

initial




sdiBuffer = {j[4:0], 3'b0, loadData r[j], loadData i[j]};

s = 0; s < 40; s++)

sck = 1'bl;

MISOcapture = sdo;
#42;

sck = 1'b0;
sdiBuffer = {sdiBuffer[38:0], MISOcapture};
#42;

readData r[j[4:0]] sdiBuffer([31:16];
readData i[]j[4:0]] sdiBuffer[15:0];

load = 1'b0;
# 70000
load = 1'bl;

j =07 3 <327 j++)

sdiBuffer {j[4:0], 3'b0, loadData r[j], loadData i[J]};

= 0; s < 40; s++)

= 1'bl;

MISOcapture = sdo;
#42;

sck = 1'b0;

sdiBuffer = {sdiBuffer[38:0], MISOcapture};
#42;

readData r[j[4:0]] = sdiBuffer[31:16];




readData 1[]j[4:0]] = sdiBuffer[15:0];

clk)
if (FFTdone) load = 1'bl;

twiddle_rom.txt
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Appendix B: Microcontroller Code

#include <stdio.h>
#include <math.h>

#include "STM32F401RE.h"
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initLCD() ;

getAudioData (uintl6 t *audioData) ;

performFFT (uintl6 t *fftInput, uintlé t *fftOutputReal, uintl6 t *fftOutputlImag);
displayFFT ( *fftOutput) ;

clearDisplay () ;
displayDominantFrequency ( *displayRAM, index, dominantFreq) ;
appendCharColumn ( *displayRAM, index, *charArray,

charStartIndex);
gl5toDouble (uintl6 t glSval);

getMagnitude ( real,

configureFlash () ;

configureClock() ;

->AHB1ENR.GPIOAEN
->AHB1ENR.GPIOBEN
->AHB1ENR.DMA2EN
->APB2ENR.ADC1EN
->APB2ENR.SPI1EN
->APB1ENR.TIM2EN
->APB1ENR.TIM5EN

configureADC () ;
initTIM2 (

uintl6 t audioDatal 1:

initDMA2 ((uint32 t) &( ->DR), (uint32 t) &audioData,




spiInit (0b101, 0, 0);
initTIMS () ;

digitalWrite (
digitalWrite (

initLCD() ;

clearDisplay () ;

uintle t fftInput|
uintl6 t fftOutputReal]|

uintlée t fftOutputImag]|

fftOutputMagnitudes [
while (1) {

getAudioData (audioData) ;

delay micros(1000);

performFFT (audioData, fftOutputReal, fftOutputlImag) ;




if (1 == 0) {
fftOutputMagnitudes[i] 0;

fftOutputMagnitudes[i] = getMagnitude (
gl5toDouble (fftOutputReal[i]),
gl5toDouble (fftOutputImag[i])

displayFFT (fftOutputMagnitudes) ;

initLCD() {

pinMode (
pinMode (

pinMode (

digitalWrite (

digitalWrite (
digitalWrite (

digitalWrite (

digitalWrite ( ,

spiSendReceive (0x22) ;

digitalWrite (




digitalWrite ( 0
spiSendReceive (0x0C) ;

digitalWrite ( ,

digitalWrite (

getAudioData (uintl6 t *audioData) {

i=0; 1¢<
->SR &= ~(0x1);
->CNT = 0;
->CR2.SWSTART = 1;
while (! ( ->SR & 1));

performFFT (uintl6 t *fftInput, uintlé t *fftOutputReal, uintl6 t *fftOutputImag)

digitalWrite (

digitalWrite (

digitalWrite ( ,

delay micros(1000);

for ( i =0; 1<
spiSendReceive (i << 3);
while ( ->SR.BSY) ;
spiSendReceive (fftInput[i] >> 8);
while ( ->SR.BSY) ;
spiSendReceive (fftInput[i]) ;
while ( ->SR.BSY) ;




spiSendReceive (0) ;
while ( ->SR.BSY) ;
spiSendReceive (0) ;

while ( ->SR.BSY) ;

delay micros (1000) ;

digitalWrite ( ,

while (!digitalRead (

delay micros(1000);

digitalWrite ( E
i=0; 1<

spiSendReceive (i << 3);
while ( ->SR.BSY) ;
fftOutputReal[i] = spiSendReceive (i) ;
fftOutputReal[i] = fftOutputReal[i] <<
while ( ->SR.BSY) ;
fftOutputReal[i] |= spiSendReceive (i)
while ( ->SR.BSY) ;
fftOutputImag[i] = spiSendReceive (1) ;
fftOutputImag[i] = fftOutputImag[i] <<
while ( ->SR.BSY) ;
fftOutputImag[i] |= spiSendReceive (i) ;
while ( ->SR.BSY) ;

}

digitalWrite (

displayFFT ( *fftOutputMagnitudes) ({




maxAmplitude = 0;
dominantFreq = 0;
i=0; 1< /2; i++) |
(fftOutputMagnitudes[i] > maxAmplitude) {
maxAmplitude fftOutputMagnitudes[i];
*

’

dominantFreq i

(!maxAmplitude) {

maxAmplitude = 1;

displayRAM[
index = 0;
i =0; 1<

or ( col = 0; col < ; col++) {

height = fftOutputMagnitudes[i] / .2 * (
or ( row = 0; row < ; row++) {
displayRAM[index] = row > ( - height);

index += 1;

i=20; 1ic<
displayRAM[index] = 0;

index += 1;

index = displayDominantFrequency (displayRAM, index, dominantFreq);




while (index <
displayRAM[index] = 0;

index += 1;

( i =0; 1< ; 1+=8) {

uint8 t pixels = displayRAM[i] << 0 displayRAM[i+1]

displayRAM[i+2] << 2 displayRAM[i+3]
displayRAM[i+4] << 4 displayRAM[i+5]
displayRAM[i+6] << 6 displayRAM[i+7]
digitalWrite ( , 7 O)¢g
spiSendReceive (pixels) ;

digitalWrite ( 5 1);

clearDisplay () {
for ( i=20; i<
digitalWrite ( ,
spiSendReceive (0b0) ;
digitalWrite ( E

displayDominantFrequency ( *displayRAM, dominantFreq) {

digitsReversed[4];
i = 0;
if (dominantFreq == 0) {
digitsReversed[0] = 0;
i += 1;
}

while (dominantFreq > 0)




digitsReversed[i] = dominantFreqg % 10;

dominantFreq /= 10;

i 4= dg

( col = 0; col < ; col++) {

index = appendCharColumn (displayRAM, index, charZ, col *

index = appendCharColumn (displayRAM, index, charH, col *

( j =0; J < i; j++) {

switch (digitsReversed[]j]) {

appendCharColumn (displayRAM, index,

break;
case 1:

index appendCharColumn (displayRAM, index,

break;
case 2:

index appendCharColumn (displayRAM, index,

break;
case 3:

index appendCharColumn (displayRAM,

break;
case 4:

index appendCharColumn (displayRAM,

break;
case 5:

index appendCharColumn (displayRAM,
break;
case 6:

index appendCharColumn (displayRAM,

break;




appendCharColumn (displayRAM, index, char7, col *

break;
case 8:

index appendCharColumn (displayRAM, index, char8, col *

break;

case 9:

index appendCharColumn (displayRAM, index, char9, col *

break;

while (row <

displayRAM[index] = 0;
index += 1;

row += 1;

}

return index;

appendCharColumn ( *displayRAM, *charArray, charStartIndex)

displayRAM[index] = 0;

index += 1;

j =0; 3 < PoJr) o
displayRAM[index] = charArray[charStartIndex + j];
index += 1;

}

return index;




gl5toDouble (uintl6 t glb5val)
uintlé t mask = 1 << 15;
doubleValue = 0;

difference;

if (mask == (mask & gl5val)) {
doubleValue = -1;

for( i = 0; 1 < 15; ++i) {
mask = 1 << 1;
if (mask == (mask & gl5val)) {
difference = 15-1;

doubleValue += pow (0.5, difference);

}

return doubleValue;

getMagnitude ( real, imag)

return sqrt (pow(real, 2) + pow(imag, 2));

#include "STM32F401RE ADC.h"

configureADC () {

->SQR3.S0Q1

->CR2 .ADON

->CR2.DMA
->CR2.DDS




#include "STM32F401RE DMA.h"

initDMA2 (uint32 t peripheralAddress, uint32 t memoryAddress, uintl6 t numData) {

.CHSEL = 0b000;

.DIR = 0b00;

->S0PAR = peripheralAddress;

->SO0MOAR memoryAddress;

->SONDTR numData;

->SO0CR.EN = 1;




#include "STM32F401RE FLASH.h"

configureFlash () {
->ACR.LATENCY
—->ACR.PRFTEN

#include "STM32F401RE SPI.h"
#include "STM32F401RE RCC.h"

#include "STM32F401RE GPIO.h"

spiInit (uint32 t br, uint32 t cpol, uint32 t cpha)

pinMode (
pinMode (

pinMode (

->0SPEEDR |= (0bll << 2*5);

(0b101 << 4*5) | (0b1l01 << 4%*6)

.BR = br;
.CPOL = cpol;
.CPHA = cpha;
.LSBFIRST = 0;
.DFF = 0;
.SSM = 0;

| (0b101 <<

4*7) ;




—->CR2.SSOE
->CR1.MSTR
->CR1.SPE

uint8 t spiSendReceive (uint8 t send) {

while (! ( ->SR.TXE) ) ;
->DR.DR = send;

while (! ( ->SR.RXNE) ) ;

uint8 t rec = ->DR.DR;

return rec;

uintl6 t spiSendReceivel6 (uintl6 t send) {
->CR1.SPE = 1;
->DR.DR = send;
while (! ( ->SR.RXNE) ) ;
uintlé t rec = ->DR.DR;
->CR1.SPE =

return rec;

#include "STM32F401RE TIM.h"

#include "STM32F401RE RCC.h"

initTIM2 ( samplingFreq)

TIM2->PSC 0x0000;

TIM2->ARR SystemCoreClock/samplingFreq;

TIM2->CR2.MMS = 0b010;
TIM2->DIER.UDE = 1;




}

TIM2->EGR

TIM2->CR1l |= 1;

initTIMS () {

psc_div = ( ((SystemCoreClock/1e6)-1) ;

TIM5->PSC = (psc_div - 1);

TIM5->DIER.UIE = 1;

TIM5->EGR |= 1;

TIM5->CR1 |= 1;

delay millis(
TIM5->ARR = ms*1000;
TIM5->EGR |= 1;
TIM5->SR &= ~ (0x1);

TIM5->CNT = 0;

while (! (TIM5->SR & 1))

delay micros (
TIM5->ARR = us;
TIM5->EGR |= 1;
TIM5->SR &= ~(0x1);

TIM5->CNT = 0;

while (! (TIM5->SR & 1)) ;




