
Whack-a-Mole
andKaanthi Pandhigunta Cora Payne

Final Project Report
E155

December 10, 2021

mailto:kaanthi.p@gmail.com
mailto:cpayne@g.hmc.edu

Abstract
For our final project, we built a digital version of the arcade game Whack-a-Mole (WaM). Our
setup consists of four major components: the STM32 microcontroller, the MAX1000 FPGA, a
WaM board that we built, and a monitor. The FPGA drives a 640 x 480 pixel display on the
monitor over VGA to display the moles. The WaM board consists of 3 platforms that are
attached on top of snap action microswitches. The STM32 microcontroller controls gameplay by
taking in inputs from the WaM board, processing them, and sending control signals to the FPGA
via the shared GPIO pins on the breakout board.

Introduction
Motivation

For this project, we wanted to implement a fully functioning arcade game, so we brainstormed
quite a few. We settled on Whack-a-Mole because we thought being violent towards some moles
would allow us to blow off some steam while debugging. Furthermore, this game seemed
possible to implement with our limited hardware and time.

Block Diagram

Figure 1. Overall system block diagram

Overview

For our version of the game, rather than making the moles rise mechanically to be whacked, we
chose to have them appear on a screen for a newer, more digital approach. The moles appear at
one of three locations on the screen in a random sequence and the user must whack the
corresponding platform on the WaM board within a certain time limit. The user gets one point for
each mole that is whacked, and the score is displayed at the top of the screen. The user is not
penalized for hitting the wrong button or pressing the correct button multiple times, but only gets
one point per mole if they hit the correct platform. As the game progresses, the moles appear in
faster succession, requiring more concentration and speed from the user. Players win by reaching

1

the maximum score of 32 and lose by missing hitting a mole before time runs out. Either way,
the end of the game takes the player back to the start screen, where they can choose to play
again.

New Hardware
VGA Display

The VGA Display is the most significant piece of new hardware that we implemented for this
project. We are driving the monitor at a resolution of 640 x 480 active pixels (800 x 525 pixels
including porches) which requires a 25.175 MHz clock in order to have a frame refresh rate of
approximately 60 Hz, a common threshold value for any flickering to be imperceptible. [1]
Because the FPGA clock runs at 12 MHz, we needed to use a PLL to get the proper clock speed.

To interface with the monitor, we soldered wires to all the pins on a VGA connector and
connected all the signals to the appropriate pins on the breadboard. We used a male-to-male
VGA cable to wire the connector to the monitor.

The horizontal and vertical timing signals, hsync and vsync, were generated by the FPGA and
outputted directly to the VGA display. We settled on traditional 8-bit color, which is 3 bits for
red, 3 bits for green, and 2 bits for blue. The digital data for the color channels is converted to
analog voltages of 0-0.7V using 2 and 3-bit resistor-ladder DACs. When we modeled the DACs
as resistor-ladders, we included the 75Ω VGA termination resistance and chose resistor values so
that the output voltage for each color channel would be approximately linearly proportional to its
3-bit or 2-bit digital control signal. The DACs and all resistor values are shown in full in the
schematic in Appendix A.

Figure 2. Expected resistor-ladder DAC voltage outputs for all possible color channel values.

2

Snap Action Microswitches

We decided to use snap action microswitches to collect inputs from the user because they are
reliable for long-term use, and we knew we needed hardware that was robust enough to
withstand repeated whacking. Microswitches have three connection points: common (C),
normally open (NO), and normally closed (NC). When the switch is not being pressed, power
flows from C to NC. When the switch is being pressed, power flows from C to NO. Because we
want an input to be recorded only when the button is pressed, the NO terminal is most
appropriate for this application. To accomplish this, we powered NC, wired C to an MCU GPIO
pin, and grounded NC, so whenever the lever is pressed, an input is recorded. We used 3
microswitches to correspond to the 3 mole positions.

Microswitches are often used because they require low operating force. However, we found that
the required operating force was too low for our application, because an input would be recorded
if the user just tapped the lever rather than whacking it. To remedy this, we attached springs
under the platforms and hovered them over the switches, so the user has to apply significant
force to record an input.

MCU Design
In our design, the microcontroller runs the main game logic and sends game updates to the
FPGA over a few control signals. The MCU takes inputs from the WaM board over 3 GPIO pins
and dynamically outputs state and score data to the FPGA. We used 3 shared MCU and FPGA
pins to transmit 3 state bits and 5 shared pins to transmit 5 score bits to the FPGA. Because we
are using 5 score bits, the maximum score that a user can reach is 32, at which point they win
and the game ends.

Our game logic consists of 7 states:

● State 3’b000: The first state displays the start screen. Once the user presses the start
button, the game moves onto displaying the moles.

● States 3’b100, 3’b010, 3’b001: The mole positions are generated using a time-seeded
random number generator in C, and each of the three mole positions corresponds to a
different state.

● State 3’b110: We noticed that if the random number generator makes a mole reappear in
the same position, it is difficult for the user to tell that they need to whack the same mole
again. Thus, we added a state that is just the background with no moles that is displayed
for a few milliseconds between mole iterations to distinguish them.

3

● State 3’b101: If the user does not whack the mole with enough force or within the correct
amount of time, they lose, and the game moves into the lose state. The lose state displays
a red screen for 3 seconds before automatically returning to the start state.

● State 3’b101: If the user manages to whack all the moles and reaches the maximum score
of 32 (a difficult feat!), they win, and the game moves into the win state. The win state
displays the win screen for 3 seconds before automatically returning to the start state.

Inside the main function, the outer loop continues infinitely, so the game can be replayed an
infinite number of times. The first inner loop remains in the start state until the start button is
pressed. The second loop is the most important as it keeps track of whether the user has lost or
has reached the maximum score. To keep track of the mole duration, we used one of the MCU
timers, TIM4, clocked slowly enough to let us time things on the scale of multiple seconds by
using the maximum prescaler value. In the second loop, new moles are generated at increasingly
faster speeds (the time window is a decreasing function of the user’s current score) and evaluates
if the user’s input is correct. The user is not penalized for hitting the wrong button or pressing the
correct button multiple times, but cannot get multiple points within the same mole iteration. The
user loses if the correct input is not recorded within the allotted time and wins if they reach the
maximum score of 32. In these cases, the game moves into the appropriate win or lose state for 3
seconds before automatically returning to the start screen.

FPGA Design
The FPGA displays graphics by taking data from the MCU and generating VGA color and
control signals. We have multiple modules that can be considered either VGA control modules or
pixelmap generation modules.

The VGA control modules instantiate the PLL that generates the pixel clock, generate VGA
timing signals (hsync and vsync) based on that pixel clock, and determine red, green, and blue
color signals for each pixel. The controller has an x-counter and y-counter. The x-counter
increments every clock cycle and resets when it gets to the end of the line. The y-counter
increments whenever the x-counter resets and resets when it gets to the bottom of the screen. The
controller also drives hsync and vsync signals that control the blanking intervals during which no
pixels are drawn. This resolution requires a pixel clock speed of 25.175MHz, so we used a
built-in PLL module in Quartus.

The pixelmap generation modules take data from pixelmaps, which are stored in text files, and
tell the VGA control modules what colors to display. Each sequence of 8 bits in the pixelmap
corresponds to the color of one pixel on the screen. To generate these pixelmaps, we drew pixel
art on drawing software and ran it through a MATLAB function we wrote to convert it into the
correct format that the FPGA could take into ROM (for code and an example pixelmap, see

4

Appendix D). Because the M9K memory blocks on the FPGA are limited in the width of the data
that they can take in, we chose to make our pixelmap 32 bits per line (which corresponds to four
8-bit pixels) instead of being as wide as the number of pixels on the screen. At first, we tried to
create a pixelmap with 8 bits for each pixel on the 640 x 480 pixel screen. However, this
generated a huge text file that took very long to compile, so we decreased the resolution of our
pixelmaps, using 8 bits to encode either an 8x8 or 16x16 square of pixels on the screen, rather
than just one pixel. These differences mean that indexing into the .txt file varies between
modules controlling different parts of the game with different resolutions. We created pixelmap
generation modules for the start screen, game background, moles, text/numbers, and the win
screen.

To overlay pixelmaps on one another (for example, overlaying text on the start screen, or
overlaying moles on the background), we used an extra control bit to decide if that particular
pixel is a foreground pixel or background pixel. The VGA controllers display a foreground pixel
if it exists in that location, but will default to the background pixel color if there is no foreground
in that spot.

The FPGA changes what is being displayed based on the state bits that it receives from the
MCU. It dynamically updates the score being displayed based on the score bits that it receives
from the MCU.

Figure 3. FPGA logic block diagram. Repeated sub-modules for generating components of larger
graphics are shown in parentheses.

5

Results
Given our hardware and timeline constraints, our project turned out extremely well. We were
able to create a fully functioning arcade game with human-machine interaction and VGA
graphics of reasonable quality. We had a lot of fun playing it ourselves.

Our final submission had only a few minor differences from our project proposal. We realized
that gameplay code was rather difficult to implement on the FPGA, so we decided to move it to
the MCU. This way, we also used the MCU more significantly than we originally planned. Also,
because the FPGA only needed a few control signals from the MCU, we decided that SPI was
unnecessary, since it could more easily be done with shared GPIO pins. Furthermore, instead of
using 3-DACs for each color channel, we used 3-bit DACs for the red and green channels and a
2-bit DAC for the blue channel because multiplication and division is simpler with 8 bits of color
per pixel rather than 9 bits. Traditional 8-bit color encoding uses this setup because human eyes
are less sensitive to blue light.

The timing of the game is crisp and has no perceptible latency between hitting platforms and the
game state or score updating on the screen. The game counts the player’s score accurately and
can handle all inputs that we have tried, as we have been unable to break the game or force it into
a failed state.

With our graphics, we ran into the problem of ghosting, where pixel colors bleed into adjacent
pixels. We were not able to find the root cause of this, but we suspect that there is an issue with
impedance matching based on a previous VGA project report. [2] We added an N14148 diode in
series with each VGA color signal, which helped slightly with the ghosting, but did not totally
eliminate it. If we had more time, we would have looked into using op-amps to try to resolve
this. However, this issue did not significantly affect our game, as the text and major components
are still clearly visible.

Figure 4. Start screen and gameplay screen.

6

Our WaM board was a lot more robust than we expected due to the springs we attached at the
bottom, making whacking really fun. We laser cut some platforms out of some light, thin wood
and engraved numbers and mole icons on them, which significantly contributed to the overall
polish of our finished product.

Figure 5. Finished Whack-A-Mole board with laser-etched platforms and spring setup.

References
[1] Sarah L. Harris and David Harris, Digital Design and Computer Architecture: ARM Edition ,
Elsevier Science, 2016.
[2] Reynaldo Farias Zorrilla and Noah Boorstin, Pel Final Report, E155 Fall 2019.
http://pages.hmc.edu/harris/class/e155/projects19/Farias_Zorrilla_Boorstin.pdf

Bill of Materials

Part Purpose Part # Source Quantity Budget Cost

Wood Platforms for
WaM board

N/A Machine
Shop

3

Snap-action
switches

WaM board
digital input

CYT1073 Amazon
(Cylewet)

3 $6.99
(pack of 25)

VGA M/M
cable, 3 ft

Interface with
monitor

5361 Monoprice 1

VGA solder
connector

Separate
VGA signals

N/A Stock Room 1

Resistors,
470Ω

DAC
components

N/A Digital Lab 3

Resistors,
1.2kΩ

DAC
components

N/A Digital Lab 2

Resistors, DAC N/A Digital Lab 2

7

http://pages.hmc.edu/harris/class/e155/projects19/Farias_Zorrilla_Boorstin.pdf

2kΩ components

Resistors,
680 Ω

DAC
components

N/A Digital Lab 1

1N4148
Diodes

DAC
components

N/A Digital Lab 3

Monitor Display
moles and
player score

N/A Digital Lab 1

Springs Support
platforms and
cushion
whacks

N/A Stock Room 12

Nucleo
STM32 MCU

Interface
between
switches and
FPGA, run
gameplay

NUCLEO-F4
01RE

Lab Kit 1

MAX10
FPGA

Generate
graphics,
drive VGA
display

TEI0001-03-
08-C8

Lab Kit 1

Total Budget $6.99

8

Appendix A: Schematics
Breadboard Schematic

Appendix B: FPGA SystemVerilog
wam.sv
// wam.sv

9

// Kaanthi Pandhigunta (kpandhigunta@hmc.edu)

// Cora Payne (cpayne@hmc.edu)

// E155 Final Project: Whack-A-Mole

// 10 December 2021

// Top-level WaM module

module wam(input logic clk,

input logic[4:0] score,

input logic[2:0] state,

output logic hsync, vsync,

output logic[2:0] r, g,

output logic[1:0] b);

vga display(clk, score, state, hsync, vsync, r, g, b);

endmodule

vga.sv
// vga.sv

// Kaanthi Pandhigunta (kpandhigunta@hmc.edu)

// Cora Payne (cpayne@hmc.edu)

// E155 Final Project: Whack-A-Mole

// 10 December 2021

// VGA module to display WaM graphics and text

module vga(input logic clk,

input logic[4:0] score,

input logic[2:0] state,

output logic hsync, vsync,

output logic[2:0] r, g,

output logic[1:0] b);

// pixel coordinates. (0,0) is the top left corner

logic[9:0] x, y;

// Use a PLL to create the 25.175 MHz VGA pixel clock

// 25.175 MHz clkperiod = 39.772 ns

// Screen is 800 clocks wide by 525470 kHz

// Vsync= 31.474 kHz / 525 = 59.94 Hz (~60 Hz refresh rate)

PLL vgapll(.inclk0(clk), .c0(vgaclk));

// generate monitor timing signals

vgaController vgaCont(vgaclk, hsync, vsync, x, y);

// user-defined module to determine pixel color at each location

10

videoGen videoGen(x, y, score, state, r, g, b);

endmodule

// Generates VGA timing signals (hsync, vsync) based on pixel clock

module vgaController

#(parameter HACTIVE = 10'd640, // number of pixels per line

HFP = 10'd16, // horizontal front porch

HSYN = 10'd96, // horizontal sync pulse = 60 to move

electron gun back to left

HBP = 10'd48, // horizontal back porch

HMAX = HACTIVE + HFP + HSYN + HBP, // 48+640+16+96=800:

number of horizontal pixels

VBP = 10'd32, // vertical back porch

VACTIVE = 10'd480, // number of lines

VFP = 10'd11, // vertical front porch

VSYN = 10'd2, // vertical sync pulse = 2 to move

electron gun back to top

VMAX = VACTIVE + VFP + VSYN + VBP) // 32+480+11+2=525: number

of vertical pixels

(input logic vgaclk,

output logic hsync, vsync,

output logic[9:0] hcnt, vcnt);

// counters for horizontal and vertical states

always@(posedge vgaclk) begin

// if(reset) begin

// hcnt<= 0;

// vcnt<= 0;

// end

begin

hcnt++;

if(hcnt== HMAX) begin

hcnt<= 0;

vcnt++;

if(vcnt== VMAX)

vcnt<= 0;

end

end

end

// compute sync signals (active low)

assign hsync= ~((hcnt >= (HACTIVE + HFP)) & (hcnt < (HACTIVE + HFP + HSYN)));

assign vsync= ~((vcnt >= (VACTIVE + VFP)) & (vcnt < (VACTIVE + VFP + VSYN)));

endmodule

11

// Determines color signals (r, g, b) for each pixel based on current game state

module videoGen(input logic[9:0] x, y,

input logic[4:0] score,

input logic[2:0] state,

output logic[2:0] r, g,

output logic[1:0] b);

logic[7:0] startcolor, bgcolor, fgcolor, wcolor, lcolor;

logic fgassert, inw, inl;

startgen start(x, y, startcolor);

backgroundgen background(x, y, bgcolor);

foregroundgen foreground(x, y, score, state, fgcolor, fgassert);

rectgen wrect(x, y, 10'd0, 10'd0, 10'd640, 10'd480, inw);

rectgen lrect(x, y, 10'd0, 10'd0, 10'd640, 10'd480, inl);

assign c = (state==3'b000) ? startcolor : ((state==3'b111&inw) ? 8'b00111000 :

((state==3'b101&inl) ? 8'b00000111 : (fgassert ? fgcolor : bgcolor)));

assign r = c[2:0];

assign g = c[5:3];

assign b = c[7:6];

endmodule

// Generates a rectance with specified corner locations

module rectgen(input logic[9:0] x, y, left, top, right, bot,

output logic inrect);

assign inrect = (x >= left & x < right & y >= top & y < bot);

endmodule

// Generates start screen

module startgen(input logic[9:0] x, y,

output logic[7:0] color);

logic[7:0] bgcolor;

logic textassert;

startbggen sgen(x, y, bgcolor);

textgen tgen(x, y, textassert);

12

assign color = textassert ? 8'h00 : bgcolor;

endmodule

// Generates background image of start screen (8x8px blocks, 80x60-block image)

module startbggen(input logic[9:0] x, y,

output logic[7:0] pxcolor);

logic[31:0] startrom[1199:0];

logic[31:0] line; // a line read from the

ROM

logic[7:0] c;

// initialize ROM with characters from text file

initial $readmemb("start.txt", startrom); // start2

// index into ROM to find line

// index: y/8 * 20 + x/8 * 1/4

// (1 block per 8 px line * 20 txt lines per px line + 1 block per 8 px * 1 txt

line holds 4 blocks)

assign line = (x >= 0 & x <= 639 & y >= 0 & y <= 479) ? startrom[(y >> 3)*20 + (x

>> 5)] : 32'b0;

// index: 31 - 8 * (x/8)mod4, get 8 bits (one color) at once

// (8 because counting by 8’s to get a color, 8 because block is 8x8px, mod4

because 32 bits per txt line holds 4 colors)

assign c = (x >= 0 & x <= 639 & y >= 0 & y <= 479) ? line[(31-8*((x>>3)%4)) -: 8]

: 8'b0;

assign pxcolor = {c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]};

endmodule

// Displays pixel-resolution text on start screen

// "PRESS 1 TO START" on the left cloud

// "BY KAANTHI + CORA :)" on the right cloud

module textgen(input logic[9:0] x, y,

output logic textassert);

logic[7:0] numcolor;

logic[9:0] left1, top1;

logic text1assert, p5, p4, p3, p2, p1, p0, numassert, t1, t0, s5, s4, s3, s2, s1,

s0;

assign left1 = 10'd80;

assign top1 = 10'd264;

chargen press4(8'd80, x, y, left1, top1, p5);

13

chargen press3(8'd82, x, y, left1+10'd8, top1, p4);

chargen press2(8'd69, x, y, left1+10'd16, top1, p3);

chargen press1(8'd83, x, y, left1+10'd24, top1, p2);

chargen press0(8'd83, x, y, left1+10'd32, top1, p1);

numgen n(8'd1, x, y, left1+10'd40+4, top1, numcolor, numassert);

chargen to1(8'd84, x, y, left1+10'd48+8, top1, t1);

chargen to0(8'd79, x, y, left1+10'd56+8, top1, t0);

chargen start4(8'd83, x, y, left1+10'd64+12, top1, s5);

chargen start3(8'd84, x, y, left1+10'd72+12, top1, s4);

chargen start2(8'd65, x, y, left1+10'd80+12, top1, s3);

chargen start1(8'd82, x, y, left1+10'd88+12, top1, s2);

chargen start0(8'd84, x, y, left1+10'd96+12, top1, s1);

assign text1assert = (p5|p4|p3|p2|p1|p0)|numassert|(t1|t0)|(s5|s4|s3|s2|s1|s0);

logic[9:0] left2, top2;

logic text2assert, b1, b0, k6, k5, k4, k3, k2, k1, k0, p, c3, c2, c1, c0, s;

assign left2 = 10'd464;

assign top2 = 10'd340;

chargen by1(8'd66, x, y, left2-10'd24, top2, b1);

chargen by0(8'd89, x, y, left2-10'd16, top2, b0);

chargen kaanthi6(8'd75, x, y, left2, top2, k6);

chargen kaanthi5(8'd65, x, y, left2+10'd8, top2, k5);

chargen kaanthi4(8'd65, x, y, left2+10'd16, top2, k4);

chargen kaanthi3(8'd78, x, y, left2+10'd24, top2, k3);

chargen kaanthi2(8'd84, x, y, left2+10'd32, top2, k2);

chargen kaanthi1(8'd72, x, y, left2+10'd40, top2, k1);

chargen kaanthi0(8'd73, x, y, left2+10'd48, top2, k0);

chargen plus(8'd93, x, y, left2+10'd56, top2, p);

chargen cora3(8'd67, x, y, left2+10'd64, top2, c3);

chargen cora2(8'd79, x, y, left2+10'd72, top2, c2);

chargen cora1(8'd82, x, y, left2+10'd80, top2, c1);

chargen cora0(8'd65, x, y, left2+10'd88, top2, c0);

chargen smile(8'd92, x, y, left2+10'd96+4, top2, s);

assign text2assert = (b1|b0)|(k6|k5|k4|k3|k2|k1|k0)|p|(c3|c2|c1|c0)|s;

//assign textassert =

(p5|p4|p3|p2|p1|p0)|numassert|(t1|t0)|(s5|s4|s3|s2|s1|s0)|(b1|b0)|(k6|k5|k4|k3|k2|k1|

k0)|p|(c3|c2|c1|c0)|s;

assign textassert = text1assert | text2assert;

14

endmodule

// Generates foreground (overlaid) graphics for game screen: score text, moles

module foregroundgen(input logic[9:0] x, y,

input logic[7:0] score,

input logic[2:0] state,

output logic[7:0] fgcolor,

output logic fgassert);

// display score

logic p5, p4, p3, p2, p1, p0;

chargen score_s(8'd83, x, y, 10'd288, 10'd80, p5);

chargen score_c(8'd67, x, y, 10'd296, 10'd80, p4);

chargen score_o(8'd79, x, y, 10'd304, 10'd80, p3);

chargen score_r(8'd82, x, y, 10'd312, 10'd80, p2);

chargen score_e(8'd69, x, y, 10'd320, 10'd80, p1);

chargen colon(8'd91, x, y, 10'd328, 10'd80, p0);

logic[7:0] score1, score0;

logic[7:0] s1color, s0color;

logic s1, s0;

assign score1 = score/10;

assign score0 = score - 10*(score/10);

numgen digit1(score1, x, y, 10'd336, 10'd80, s1color, s1);

numgen digit0(score0, x, y, 10'd344, 10'd80, s0color, s0);

logic textassert;

assign textassert = s1|s0|p5|p4|p3|p2|p1|p0;

// display mole in correct location

logic[7:0] molecolor;

logic moleassert;

moveMole m1(state, x, y, molecolor, moleassert);

assign fgcolor = (moleassert ? molecolor : (textassert ? 8'h00 : 8'hFF));

assign fgassert = moleassert | textassert;

endmodule

// Generates the gameplay background image (16x16px blocks, 40x30-block image)

module backgroundgen(input logic[9:0] x, y,

output logic[7:0] pxcolor);

logic[31:0] backgroundrom[299:0]; // background ROM

logic[31:0] line; // a line read from the ROM

15

logic[7:0] c;

// initialize ROM with characters from text file

initial $readmemb("background.txt", backgroundrom); // wam_background4_v2

// index into ROM to find line

// index: y/16 * 10 + x/16 * 1/4

// (1 block per 16 px line * 10 txt lines per px line + 1 block per 16 px * 1 txt

line holds 4 blocks)

assign line = (x >= 0 & x <= 639 & y >= 0 & y <= 479) ? backgroundrom[(y >> 4)*10

+ (x >> 6)] : 32'b0;

// index: 31 - 8 * (x/16)mod4, get 8 bits (one color) at once

// (8 because counting by 8’s to get a color, 16 because block is 16x16px, mod4

because 32 bits per txt line holds 4 colors)

assign c = (x >= 0 & x <= 639 & y >= 0 & y <= 479) ? line[(31-8*((x>>4)%4)) -: 8]

: 8'b0;

assign pxcolor = {c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]};

endmodule

// Generates a movable mole sprite (16x16px image)

module molegen(input logic[9:0] x, y, left, top,

output logic[7:0] pxcolor,

output logic fgassert);

logic[31:0] molerom[63:0]; // mole generator ROM

logic[31:0] line; // a line read from the ROM

logic[9:0] xdiff, ydiff;

logic[7:0] c;

// offsets from top left corner of sprite area

assign ydiff = y-top;

assign xdiff = x-left;

// initialize ROM with characters from text file

initial $readmemb("molesprite.txt", molerom); // molesprite2

// index into ROM to find line

// index: y/8 * 4 + x/8 * 1/4

// (1 block per 8 px line * 4 txt lines per px line + 1 block per 8 px * 1 txt

line holds 4 blocks)

assign line = (x >= left & x < (left+8'd128) & y >= top & y < (top+8'd128)) ?

molerom[(ydiff >> 3)*4 + (xdiff >> 5)] : 32'b0;

assign fgassert = (x >= left & x < (left+8'd128) & y >= top & y < (top+8'd128)) ?

1'b1 : 1'b0;

16

// reverse order of bits

// index: 31 - 8 * (x)mod4, get 8 bits (one color) at once

// (8 because counting by 8’s to get a color, mod4 because 32 bits per txt line

holds 4 colors)

assign c = fgassert ? line[(31-8*((xdiff>>3)%4)) -: 8] : 8'b0;

assign pxcolor = {c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]};

endmodule

// Places mole sprite at one of 3 locations (mole holes)

module moveMole(input logic[2:0] state,

input logic[9:0] x, y,

output logic[7:0] color,

output logic fgassert);

logic[7:0] color1, color2, color3;

logic fgassert1, fgassert2, fgassert3;

molegen mg1(x, y, 10'd064, 10'd216, color1, fgassert1); // left

molegen mg2(x, y, 10'd256, 10'd296, color2, fgassert2); // middle

molegen mg3(x, y, 10'd448, 10'd216, color3, fgassert3); // right

always_comb

case(state)

3'b100: begin

color = color1;

fgassert = fgassert1;

end

3'b010: begin

color = color2;

fgassert = fgassert2;

end

3'b001: begin

color = color3;

fgassert = fgassert3;

end

default: begin

color = 8'h00;

fgassert = 1'b0;

end

endcase

endmodule

// Generates a character from a bitmap

module chargen(input logic[7:0] ch,

17

input logic[9:0] x, y, left, top,

output logic[7:0] c);

logic[5:0] charrom[231:0]; // character generator ROM

logic[7:0] line; // a line read from the ROM

logic[9:0] xdiff, ydiff;

logic pixel;

// offsets from top left corner of character area

assign ydiff = y-top;

assign xdiff = x-left;

// initialize ROM with characters from text file

initial $readmemb("charrom.txt", charrom);

// index into ROM to find line of character

assign line = (y>=top & y<=top+10'd7) ? charrom[ydiff[2:0]+{ch-8'd65, 3'b000}] :

8'b0;

// reverse order of bits

assign pixel = (x>=left & x<=left+10'd7) ? line[3'd7-xdiff[2:0]] : 1'b0;

// assign text pixels to white

assign c = pixel ? 8'b111111 : 8'b000000;

endmodule

// Generates a digit from a bitmap

module numgen(input logic[7:0] num,

input logic[9:0] x, y, left, top,

output logic[7:0] c,

output logic pixel);

logic[5:0] numrom[79:0]; // number generator ROM

logic[7:0] line; // a line read from the ROM

logic[9:0] xdiff, ydiff;

// offsets from top left corner of character area

assign ydiff = y-top;

assign xdiff = x-left;

// initialize ROM with characters from text file

initial $readmemb("numrom.txt", numrom);

// index into ROM to find line of number

assign line = (y>=top & y<=top+10'd7) ? numrom[ydiff[2:0]+{num, 3'b000}] : 8'b0;

18

// reverse order of bits

assign pixel = (x>=left & x<=left+10'd7) ? line[3'd7-xdiff[2:0]] : 1'b0;

// assign text pixels to black

assign c = pixel ? 8'h00 : 8'hFF;

endmodule

Appendix C: MCU code
main.c
// main.c

// Kaanthi Pandhigunta (kpandhigunta@hmc.edu)

// Cora Payne (cpayne@hmc.edu)

// E155 Final Project: Whack-A-Mole

// 10 December 2021

// WaM gameplay and VGA control signals for FPGA graphics

#include "STM32F401RE_GPIO.h"

#include "STM32F401RE_RCC.h"

#include "STM32F401RE_FLASH.h"

#include "STM32F401RE_TIMx.h"

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

// 3 pins for switch inputs

#define START_PIN 1 // PC1

#define SWITCH2_PIN 1 // PC1 (1. left)

#define SWITCH1_PIN 0 // PB0 (2. middle)

#define SWITCH0_PIN 4 // PA4 (3. right)

// 5 pins for communicating score to FPGA

#define SCORE4_PIN 7 // PC7_H13

#define SCORE3_PIN 5 // PA5_H4

#define SCORE2_PIN 6 // PA6_J1

#define SCORE1_PIN 7 // PA7_J2

#define SCORE0_PIN 6 // PB6_G12

// 3 pins for communicating game state to FPGA

#define STATE2_PIN 10 // PB10_K12

#define STATE1_PIN 8 // PA8_J10

#define STATE0_PIN 9 // PA9_H10

// TIM4 clock speed

19

#define CLK4 (int) 84000000/65536 // 84 MHz / (PSC+1) (TIM4->PSC.PSC set

in config function)

// Gameplay constants (times in ms)

#define MAX_SCORE 32 // score[4:0] has 5 pins to send to FPGA --> max = 2^5

#define MAX_TIME 1000 // starting time to hit the mole [ms], decreases as score

increases

#define NOMOLE_TIME 200 // time between moles (none appear on screen)

#define WIN_TIME 2000 // how long to display win screen

#define LOSE_TIME 2000 // how long to display lose screen

// duration calculates the counter value equivalent for a time interval (input in ms,

output in TIM4 clock cycles)

int duration(int d) {

volatile uint16_t dur;

dur = (CLK4*d)/1000;

return dur;

}

// wait causes a delay for a set time interval (input in ms)

void wait(int d) {

volatile uint16_t dur = duration(d);

TIM4->CNT.CNT = 0;

while(TIM4->CNT.CNT <= dur){};

}

// writeScore drives GPIO output pins to communicate the score to the FPGA

void writeScore(uint8_t score) {

int binaryScore[8] = {0, 0, 0, 0, 0, 0, 0, 0};

volatile int i = 0;

while (score > 0) {

binaryScore[i] = score % 2;

score = score / 2;

i++;

}

digitalWrite(GPIOC, SCORE4_PIN, binaryScore[4]);

digitalWrite(GPIOA, SCORE3_PIN, binaryScore[3]);

digitalWrite(GPIOA, SCORE2_PIN, binaryScore[2]);

digitalWrite(GPIOA, SCORE1_PIN, binaryScore[1]);

digitalWrite(GPIOB, SCORE0_PIN, binaryScore[0]);

}

// writeState drives GPIO output pins to communicate the game state to the FPGA

void writeState(uint8_t state) {

if(state == 0) { // start

digitalWrite(GPIOB, STATE2_PIN, 0);

20

digitalWrite(GPIOA, STATE1_PIN, 0);

digitalWrite(GPIOA, STATE0_PIN, 0);

} else if (state == 1) { // mole 1

digitalWrite(GPIOB, STATE2_PIN, 1);

digitalWrite(GPIOA, STATE1_PIN, 0);

digitalWrite(GPIOA, STATE0_PIN, 0);

} else if (state == 2) { // mole 2

digitalWrite(GPIOB, STATE2_PIN, 0);

digitalWrite(GPIOA, STATE1_PIN, 1);

digitalWrite(GPIOA, STATE0_PIN, 0);

} else if (state == 3) { // mole 3

digitalWrite(GPIOB, STATE2_PIN, 0);

digitalWrite(GPIOA, STATE1_PIN, 0);

digitalWrite(GPIOA, STATE0_PIN, 1);

} else if (state == 4) { // win

digitalWrite(GPIOB, STATE2_PIN, 1);

digitalWrite(GPIOA, STATE1_PIN, 1);

digitalWrite(GPIOA, STATE0_PIN, 1);

} else if (state == 5) { // lose

digitalWrite(GPIOB, STATE2_PIN, 1);

digitalWrite(GPIOA, STATE1_PIN, 0);

digitalWrite(GPIOA, STATE0_PIN, 1);

} else if (state == 6) { // blank state

digitalWrite(GPIOB, STATE2_PIN, 1);

digitalWrite(GPIOA, STATE1_PIN, 1);

digitalWrite(GPIOA, STATE0_PIN, 0);

}

}

// newMole randomly generates a new state (mole position)

int newMole(){

volatile int mole = (rand() % 3) + 1;

return mole;

}

// resetMoleTimer restarts the counter (TIM4) to time mole appearances

void resetMoleTimer(){

TIM4->CNT.CNT = 0;

}

int main(void) {

// Configure flash latency and set clock to run at 84 MHz

configureFlash();

// Enable GPIO clocks

RCC->AHB1ENR.GPIOAEN = 1;

RCC->AHB1ENR.GPIOBEN = 1;

21

RCC->AHB1ENR.GPIOCEN = 1;

// Enable TIM4 for timing the mole's apperances

RCC->APB1ENR |= (1 << 2); // TIM4 EN (RM, 119)

configureClock();

configureTIM4(); // in standard driver (STM32F401RE_TIMx.c), PSC =

65535

// Input pins for switches

pinMode(GPIOC, SWITCH2_PIN, GPIO_INPUT);

pinMode(GPIOB, SWITCH1_PIN, GPIO_INPUT);

pinMode(GPIOA, SWITCH0_PIN, GPIO_INPUT);

// Output pins for score

pinMode(GPIOC, SCORE4_PIN, GPIO_OUTPUT);

pinMode(GPIOA, SCORE3_PIN, GPIO_OUTPUT);

pinMode(GPIOA, SCORE2_PIN, GPIO_OUTPUT);

pinMode(GPIOA, SCORE1_PIN, GPIO_OUTPUT);

pinMode(GPIOB, SCORE0_PIN, GPIO_OUTPUT);

// Output pins for game state

pinMode(GPIOB, STATE2_PIN, GPIO_OUTPUT);

pinMode(GPIOA, STATE1_PIN, GPIO_OUTPUT);

pinMode(GPIOA, STATE0_PIN, GPIO_OUTPUT);

// Seed random number generator to randomize mole appearances

srand((unsigned int) time(NULL));

while (1) {

volatile int state = 0;

volatile int start = 0;

volatile int score = 0;

volatile int death = 0;

volatile int moleTime = MAX_TIME;

writeScore(score);

writeState(state);

// Wait for player to start game

while(!start) {

if(digitalRead(GPIOC, START_PIN)) {start = 1;}

}

// Main gameplay loop

while (!death && (score < MAX_SCORE)) {

// Blank state (no mole displayed)

state = 6;

writeState(state);

22

wait(NOMOLE_TIME);

// On to the next random mole

state = newMole();

writeState(state);

volatile int read = 0;

volatile int scorechanged = 0;

moleTime = MAX_TIME - 150*sqrt(score); // Time window to whack

mole decreases

volatile int moleDuration = duration(moleTime);

resetMoleTimer();

while(TIM4->CNT.CNT <= moleDuration){

// Check if the correct switch is pressed; incorrect hits aren't

penalized

if (state == 1) {

if (digitalRead(GPIOC, SWITCH2_PIN)) {read = 1;}

} else if (state == 2) {

if (digitalRead(GPIOB, SWITCH1_PIN)) {read = 1;}

} else if (state == 3) {

if (digitalRead(GPIOA, SWITCH0_PIN)) {read = 1;}

}

// Player scored and it hasn't been counted yet --> increment score only

once

if (read && !scorechanged) {

score += 1;

writeScore(score);

scorechanged = 1;

}

};

// Didn't hit in time --> player loses

if (!scorechanged) {

death = 1;

writeState(5);

wait(LOSE_TIME);

Break;

} // Reached max score --> player wins

else if (score == MAX_SCORE) {

writeState(4);

wait(WIN_TIME);

Break;

}

}

}

}

23

Appendix D: MATLAB code and Pixelmap Example
make8bitmap.m
function make8bitmap(filename, width, height, b)

% converts a .png image into an 8-bit color pixelmap for vga.sv

if nargin<4

b = 1; % block size, default is full resolution

end

im = imread([filename '.png']);

tic

str = '';

for i=1:b:height

for j=1:b:width

color = '';

for k=1:2

rg = median(im(i:i+(b-1),j:j+(b-1),k));

if rg < 32

channel = '000';

elseif rg < 64

channel = '001';

elseif rg < 96

channel = '010';

elseif rg < 128

channel = '011';

elseif rg < 160

channel = '100';

elseif rg < 192

channel = '101';

elseif rg < 224

channel = '110';

else

channel = '111';

end

color = strcat(color, channel);

end

bl = median(im(i:i+(b-1),j:j+(b-1),3));

if bl < 64

channel = '00';

elseif bl < 127

channel = '01';

elseif bl < 191

channel = '10';

else

channel = '11';

end

24

color = strcat(color, channel);

str = strcat(str, color); % add block's color to running str

if ~mod(j+(b-1),4*b) % 32 bits/line --> 4 colors/line

str = strcat(str, '\n');

end

end

end

toc

fprintf(fopen([filename '.txt'],'w'), str); % save to a .txt file

end

molesprite.txt
// Encodes 16 x 16 px mole sprite:

// 32 bits/txt line * 1 px/8 bits = 4 px/txt line

// 16 image lines * 16 px/image line * 1 txt line/4 px = 64 txt lines

01110101011101010111010101110101

01110101011101010000000000000000

00000000000000000111010101110101

01110101011101010111010101110101

01110101011101010111010101110101

00000000010001001000110010001100

10001100100011000100010000000000

01110101011101010111010101110101

01110101011101010111010101000100

10001100100011001000110010001100

10001100100011001000110010001100

01000100011101010111010101110101

01110101011101010111010101000100

10001100000000000000000010001100

10001100000000000000000010001100

01000100011101010111010101110101

01110101011101010100010010001100

10001100000000000000000010001100

10001100000000000000000010001100

10001100010001000111010101110101

01110101011101010100010010001100

10001100000000000000000010001100

10001100000000000000000010001100

10001100010001000111010101110101

01110101011101010100010010001100

10001100100011001000110010001100

10001100100011001000110010001100

10001100010001000111010101110101

01110101011101010100010010001100

25

10001100010001000100010001000100

01000100010001000100010010001100

10001100010001000111010101110101

00000000000000000100010010001100

10001100010001000100100101101101

01101101010010010100010010001100

10001100010001000000000000000000

00000000000000000100010010001100

10001100100011001101011011111111

11111111110101101000110010001100

10001100010001000000000000000000

00000000000000000100010010001100

10001100100011001011001011011011

11011011101100101000110010001100

10001100010001000000000000000000

00000000000000000000000000000000

10001100100011001000110010001100

10001100100011001000110010001100

01000100000000000000000000000000

00100000111011011110110111101101

10101001100011001000110010001100

10001100100011001000110001000100

11101101111011011110110101100100

11101101111011011110110111101101

11101101000000000000000000000000

00000000000000000000000011101101

11101101111011011110110111101101

11101101101010011110110110101001

11101101000000000000000000000000

00000000000000000000000011101101

10101001111011011010100111101101

10001100100011000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000001000110010001100

26

