Ocean Forecast Visualizer
HMC E155 Final Project Fall 2021
Shreya Sanghai, Lauren Le

Abstract

This project inputs ocean weather data from the stormglass APl and creatively visualizes it. The
STM32F401RE microcontroller is used to parse the data and send the weather data to the
FPGA.The Intel Max1000 FPGA detects button inputs from the user about how far into the
future they wish to see the surf data for and displays the received wave height and swell period
from the MCU on a LED panel. The MCU also controls a DF Player mini which plays ocean
nature sound tracks based on the air conditions.

Table of Contents

Abstract
Table of Contents

Introduction
Motivation
Overview

New Hardware
Schematics
Microcontroller(MCU) Design

FPGA Design
Lighting up LEDs
FSM design
User Inputs

Results
References
Bill of Materials

Appendix
Verilog
Software

Python Script for Ocean Data

O ©W O 00 N O O wWww W b

RN
-—

- =
N N =

W = 2 -
~N oo A bA

Introduction

Motivation

When surfers or scuba divers want to go catch a wave or explore underwater marine life, they often
check the surf or ocean forecast online to see if it is a good day for surfing or scuba diving.
Sometimes reading the forecast data can be boring or inconvenient when understanding the
physical implications of the numerical data. Our final project seeks to present ocean data such as
wave height, swell period, wind, etc in both visual and audio form to help people envision the ocean
conditions in a fun and aesthetic way. We will be visualizing data from Huntington Beach, California

(see Figure 1):

H" Klmptnn Sho rehreak

il Huntlngtnn Beal:li esort y g R
. ’ . i A ,,)'3- *‘

.’;*D_ :1-9 é

Huntington Beach Pier &

Figure 1 - Location of Ocean Forecast Data - Huntington Beach, California (33.655550, -118.00710).

Our project will consist of multiple wave-shaped LED panels that stack up vertically and help
disperse the light from LED strips mounted underneath the panels. Each panel represents a wave
height metric (ft). Based on the ocean data retrieved by an API request, the LED strips behind the
panels will sequentially light up and down along the vertical axis between the bottom panel and the
wave height specified. The speed at which the LED strips light up along the vertical axis will depend
on the wave swell period. Along with the LED wave display, the system will include a speaker that
plays nature music to convey the calmness or chaos of ocean conditions, determined by
parameters such as wind. In addition, we will provide buttons for users to press to specify how
much time ahead they would like to view/hear the ocean conditions. See Figure 2:

P o —
-

Poge - R o ﬁhN\f\J}‘/\/
Bl PANELS L
LoEATHE (L Yt ;/—/\(—/\Q/ﬁ \
DAL U N
Conon i %P{\ e / \ f‘\\
f DAEL 2 | EaW S0
2 b ‘/C/L/“W/g et :
Ley PHneL 2 g
Piale w2
ey PANEL) J
e
0_f SEeomsnme
Hrs. ahead. i @@@ Sk

=]

L SRy

Defuukti (wrren e

Figure 2: LED panels displaying wave height and swell period

Overview
The main components of our system are:

Input mock ocean condition data

Play nature music based on ocean conditions

Visualize swell period and wave height

Give users the option to choose how many hours ahead of current time they want
to view ocean conditions (given several options of future times)

All the main components of our system need to be working individually and with each
other for successful completion of the project.

e A T P S
SWell pevitel MBI PRV (T

Wave heihk | Wave he I\i LED Shipe urder
STMZFUol K€ Mosi /Miso FeGh LED Pane|

an S1 bt et AR A

-~ WD A
y 0 oo YEqUeAt
alr r'?ﬁ? ezt NouY 1'1' :

Figure 3: Block Diagram of System

New Hardware

The new hardware we will be using is:

e The DFP Player Mini Module to read MP3 files
o The MP3 files are stored on the SD card on the DFP player
o Based on the weather data, the MCU will determine which MP3 file must
be played from a list of preloaded files on the SD card
o The DFP Player will input the filename from the MCU and send the analog
signal to the speaker to be played
e LED strips to display the wave height and the swell period
o Each LED in the LED strip is individually controllable

o We will carefully program the LED strip to display the information
artistically.

Schematics

Sial O part
G [
e o D\]'J’f:'l == L{H Pqne]
e |
o o D Eieg
1 Q¢ panel
] & pane)
OISO
(er CD—S) PAq \n k'\ .
|o00
(Hous 03)PA0 I R CC’WWW
Shr =1
= D
2 oy
J12 + RS (CS
(Scic) PAS —+ BY e)
2 2. Gy
ohr —_
(Mos1) PRI 2 o ey

Figure 4. FPGA Schematic - LED strips, buttons and MCU

SIM3XF Up| RE
Power (PA +— '(\O YCDB
suwlj % DF Player qub = [\/‘DL%\([0
5V vee Busy
RX usg-
} ot - pEE 7 Co
;X DAC-L ADKEyL PAS - SCK
arkd L
(“@+ " s — 1 PR3 { Mos|
= — .
speaker : 1)

Figure 5. DF Player schematic connecting to MCU

Microcontroller(MCU) Design

We use the STM32F401RE microcontroller to:

Parse mock ocean data to determine input to DFP player and FPGA
Send selected mp3 filename to DFP Player which will interface with a speaker to
play music

e Communicate to MAX1000 FPGA over SPI to send swell period and wave height
data, and receive requested time to view ocean data

The MCU handles the logic for what data is displayed based on the time requested by
the user. There are three different ocean forecast statistics: wave height, wave swell,
and air temperature. The microcontroller uses digital read on two GPIO pins to decode
a two bit value as four possible time requests: 0, 2, 4, or 8 hours. Next, this information
is used to look up wave height and swell period from an array; the data values were
obtained by a separate python script that makes a Global Weather API request to
stormglass.io. Then, SPI communication (MCU is master, FPGA is slave) is used to
transmit 8 bits of information where the first three least significant bits correspond to
wave height and five most significant bits correspond to swell period.

The MCU also interfaces with the DF Player to control which tracks are played based on
the SD card inserted on the DF Player. Based on the hour (0 corresponds to current
time, 2 corresponds to 2 hours into the future, etc) requested from the FPGA, we use
digital write low to a pin wired to a resistor ladder to complete the desired circuit. Based
on the DF Player datasheet, the ADKEY1 pin interprets a specific resistance for each
numbered track loaded on the SD card (001.mp3, 002.mp3, etc). In order to control
multiple tracks played from the same ADKEY1 pin without changing the resistor value

manually, we used the resistor ladder so the total resistance adds up linearly for every
next track on the SD card.

FPGA Design

We use the MAX1000 FPGA to:

e Interface with LED strips and synchronize timing of lighting based on wave height
and swell period

e Interface with buttons which provide user with multiple options to select how
many hours ahead of time they want to view ocean data and send input to MCU
and receive back the swell period and wave hieght

Lighting up LEDs

The LEDs need 5V of power to run. We used a power supply to generate the power and
connected it to the Vcc and ground pins of the LED strip. We used a FPGA pin to send the data
out to the LED strip. We determined that although the FPGA pin is 3.3V, it is within the correct
logic levels as long as the strip has 5V of power.

— s\ gover sipqly
o o o o o ouw L PCI_UN
o — GND

Figure 6. LED lights connected to 5V power supply, ground, and pin from STM32F401RE
microcontroller.

Below is the block diagram for our LED strip. The WS2812b strip takes in a single data line.
Each LED on the strip takes 24 bits representing the colour with which it should light up and
then passes the remaining bits onto the next LED which does the same. Each bit, 1 or 0 is sent
in 1.1us based on the datasheet. A ‘1’ is high for 0.75us and low for 0.32us, and a ‘0’ is high for
0.32us and low for 0.75us. Since the FPGA clock is 12Mhz, 13 clock cycles is 1.1us. So we
either send a high for 4 cycles and low for 9 cycles for a ‘0’ or a high for 9 cycles and a low for 4
cycles for a ‘1°.

We had 10 led strips of 24 leds each divided into 5 panels (2 strips per panel). The number of
panels we light up depends on the wave height. The time it takes to turn on and turn off all 24
leds in the strip depends on the swell period. We have 5 FPGA pins driving the 5 panels.
Depending on the wave height, we have an enable signal which determines whether the panel
is on or not.

FSM design

We have an FSM that drives each strip. The FSM has 3 states: waiting, writing and delay. The
FSM stays in the writing stage for 13 clock cycles and sends either a 9 highs and 4 lows or 4
highs and 9 lows depending on the current bit being sent. Once 13 cycles have passed and the
counter reaches 0, it goes back to the waiting state. The waiting state checks if all the leds in
the strip have been written to and if so goes into the delay state. If not, we go back and write the
next bit of information. The delay state is used to reset the led strip and give it a new string of
bits. The delay is also used to interpret the swell period by having a delay between each led
lighting up in the desired color on the strip. The steps that the FSM follows are detailed below.

-_—

Chose desired color (shade of blue if led_num is less than wave _num, otherwise black)

)
2) Write bit based on chosen color (13 clock cycles)
3) Wait until 24 bits have been written (one led)
4) Incrementled_num
5) Wait until all 24 leds have been written
6) Delay desired amount of time based on swell period (and to reset the led strip)
7) Increment wave num

8) Repeat steps 1-7 until wave_num is 24

9) Decrement wave_num

10) Repeat steps 1-6 and 9 until wave_num is O
11) Repeat steps 1-12

bed-um)= Lok o\

Veﬂfﬁ ﬂ‘d })

/—\’&0,‘\,%‘/\‘”” Ccu LQ//‘]"'
¢ D nwr!=0

\j{ bk —courler = 24
e numtt

D c)\e\wa —Counie~=d

Figure 7: FSM for LED strips

User Inputs

We have 4 buttons wired to 4 FPGA pins. The button decoder module waits to detect a button
press and assigns the hour based on which button was pressed. The module has an enabled
flop that stores the last button press. The enable signal goes high when a new button is
pressed. The module then sends the output of the last hour pressed to the MCU over two pins
to represent the four possible button options.

Once the MCU detects a change in the data requested by the user, it sends over the swell
period and the wave height over SPI| and the FPGA is configured as an SPI slave.

Results

In summary, we were able to use the MCU, FPGA, buttons, and LED strips to visualize the
ocean condition data for wave height (ranges from 2 to 5 ft), swell period (ranges from from 5 to
31 seconds), and air conditions. The FPGA handles user pressed buttons by keeping track of
the most recent button pressed corresponding to the desired hour to visualize ocean conditions.
The desired hour information is sent to the MCU by digital read, and the MCU extracts the
correct stormglass API ocean data and transmits the swell period and wave height values back
to the FPGA over SPI. Then, the FPGA uses the wave height number to control how many
horizontal panels are lit and to accurately display the speed at which the LED strips light up.

While the MCU was also interfaced with the DF Player to play different ocean nature
soundtracks, the hardware was corrupted during final review check in and was therefore not
able to play any mp3 files to the speakers. However, the circuit and code for the DF Player was
previously tested and fully functional. Overall, there were multiple iterations of brainstorming,
testing, failing, debugging, and modifying of the logic implementation and hardware design
components to achieve a system that achieves the majority of the goals of the project
delineated earlier in this paper.

References

1) E85 Textbook
S. Harris and D. Harris, Digital Design and Computer Architecture: Arm edition, Elsevier
Science, 2015.

2) DFP Player Manual
https://picaxe.com/docs/spe033.pdf

3) STM32401RE Datasheet
https://pages.hmc.edu/brake/class/e155/fa21/assets/doc/STM32F401RE_Datasheet.pdf

4) STM32 Reference Manual
https://pages.hmc.edu/brake/class/e155/fa21/assets/doc/STM32F401RE_Reference_Ma
nual_RMO0368.pdf

5) Intex Max 1000 user guide
https://pages.hmc.edu/brake/class/e155/fa21/assets/doc/MAX1000UserGuide.pdf

6) LED strips datasheet
https://voltiq.ru/datasheets/WS2812B_datasheet EN.pdf

7) API for Marine Data
https://stormglass.io/

Bill of Materials

Component Description Location Unit Price Quantity Price Link

DFP Player Mini |Plays MP3 files saved on

Module SD Card DF Robot | $5.99 1] $5.99|DF Robot
Speaker Plays MP3 files audibly |Amazon $7.99 1| $7.99|Amazon
Micro SD Card |Store MP3 Files Amazon $7.99 1] $7.99|Amazon
LED Strips Display Wave data Amazon |$18.99 2| $37.98 Amazon
TOTAL $59

https://www.dfrobot.com/product-1121.html
https://www.amazon.com/gp/product/B0738NLFTG/ref=as_li_ss_tl?ie=UTF8&psc=1&linkCode=sl1&tag=selfhostedh0c-20&linkId=ffdf6be5932eceaf49cd24dcf70f4546&language=en_US
https://www.amazon.com/Samsung-MicroSDHC-Adapter-MB-ME32GA-AM/dp/B06XWN9Q99/ref=sr_1_3?crid=2WYW2VZ5PAJ6P&keywords=micro+SD+card+FAT+16&qid=1636013600&s=electronics&sprefix=micro+sd+card+fat+16%2Celectronics%2C105&sr=1-3
https://www.amazon.com/ALITOVE-Addressable-Programmable-Waterproof-Controller/dp/B0957R6QD9/ref=sr_1_2_sspa?keywords=Programmable+LED+Lights&qid=1636013991&sr=8-2-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUFPTERVUzBSVVpJUTAmZW5jcnlwdGVkSWQ9QTAwMzMwNjczSllVMTdTM0pYQUQ3JmVuY3J5cHRlZEFkSWQ9QTAxMzU4NzExUVdLUDlaOVZYNEtCJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==

Appendix

Verilog Pin Assignments

Mode Mame Direction Location /0 Bank VREF Group Fitter Location 1/ O Standard
& buttons[3] Input PIN_K12 5 B5_NO PIN_K12 3.3-V LVTTL
& buttons[2] Input PIN_K11 5 B5_NO PIN_K11 3.3-V LVTTL
& buttons[1] Input PIN_J12 5 B5_NO PIN_J12 3.3-V LVTTL
& buttons[0] Input PIN_L12 5 B5_ND PIN_L12 3.3-V LVTTL
& clk Input PIN_H& 2 B2_NO PIN_HE 3.3-V LVTTL
“® hourToDisplay[1] Output PIN_E4 14 B1_NO PIN_E4 3.3-V LVTTL
‘@ hourToDisplay[0] Output PIN_F1 14 B1_NO PIN_F1 3.3-V LVTTL
B led[7] Output PIN_DB 8 BB_NO PIN_D& 3.3-V LVTTL
‘& led[s] Output PIN_C10 8 BA_NO PIN_C10 3.3-V LVTTL
& led[s] Cutput PIN_C3 8 BE_NO PIN_Cg 3.3-V LVTTL
‘B led[4] Output PIN_B10 8 B&_NO PIN_B10 3.3-V LVTTL
‘= led[3] Output PIN_A10 8 B8 _NO PIN_A10 3.3-V LVTTL
& led[2] Output PIN_A11 8 BB_NO PIN_A11 3.3-V LVTTL
‘= led[1] Output PIN_AZ 8 BA_ND PIN_AD 3.3-V LVTTL
B led[0] Output PIN_AB 8 B&_NO PIN_A8 3.3-V LVTTL
& load Input PIN_J13 5 B5_NO PIN_113 3.3-V LVTTL
& reset Input PIN_H10 5 B5_NO PIN_H10 3.3-V LVTTL
& sck Input PIN_H4 2 B2_NO PIN_H4 3.3-V LVTTL
& sdi Input PIN_J2 2 B2_NO PIN_J2 3.3-V LVTTL
- wave_panels[4] Cutput PIN_E1 14 B1_NO PIN_E1 3.3V LVTTL
‘S wave panels[3] Cutput PIN_C2 1A B1_NO PIN_C2 3.3-V LVTTL
- wave_panels[2] Output PIN_C1 1A B1_NO PIN_C1 3.3-V LVTTL
- wave_panels[1] Cutput PIN_D1 1A B1_NO PIN_D1 3.3-V LVTTL
- wave_panels[0] Output PIN_K10 5 B5_NO PIN_K10 3.3-V LVTTL

Verilog
- 00001

module Ocean_Data_SPI(input logic clk,
input logic reset,
input logic sck, // Serial Clock Output - FPGA PA5 H4 ... MCU
D13
input logic sdi, // MOSI - FPGA PA7 J2 ... MCU D11
// output logic sdo, // MISO - FPGA PA6 J1 ... MCU D12
input 1logic load, // load - FPGA PB5_J13 ... MCU D4

input logic [3:0] buttons,
output logic [1:0] hourToDisplay,
output logic [4:0] wave_panels,

output logic [7:0] led); // done PB3_J12 ... D3

logic [7:0] q;

logic [2:0] wave_height;
logic [4:0] wave_enable;
logic [4:0] swell period;
logic [7:0] counter;

assign wave_height = q[2:0];
assign swell period = q[7:3];

assign led[2:0]
assign led[7:3]

hourToDisplay;
buttons;

spi_slave receive only spi(clk, sck, sdi,load, g, counter);

flop flopl(clk, reset, buttons, hourToDisplay);

waves wavel(clk, reset, wave_height, swell period, wave_panels,
wave_enable);

endmodule

// slave (FPGA) only needs to receive data from master (MCu)

module spi_slave receive only(input logic clk, sck,
input logic
sdi,
input logic
load,
output logic
[7:@] a,

output logic
[6:0] counter);
always_ff @(posedge sck) begin
q <= {q[6:0], sdi};
end
endmodule

// CODE FOR BUTTONS
module flop(input logic clk, reset,
input logic [3:0] buttons,
output logic [1:0] hourToDisplay); // ADD EN

logic [1:0] hours;
logic en;
decoder decoderl(buttons,hours,en);

always_ff @ (posedge clk) begin

if (en)
begin
hourToDisplay <= hours[1:0];
end
end
endmodule

module decoder(input logic [3:0] buttons,
output logic [2:0] hours,
output logic en);

always_comb
// hours
begin
if (buttons == ~4'b0001) hours = 3'do;

else if (buttons == ~4'b0010) hours = 3'd1l;
else if (buttons == ~4'b0100) hours = 3'd2;
else if (buttons == ~4'b1000) hours = 3'd3;

else hours = 3'd4;
end

always_comb

// enable

begin
if (hours == 3'd4) en = 1'b0;
else en = 1'bl;

end

endmodule

module waves (input logic clk,
input logic reset,
input logic [2:0] wave_height,
input logic [4:0] swell period,
output logic [4:0] leds,
output logic [4:0] wave _enable);

panel_decoder panel decoderl(wave_height, wave_enable);

bit transmitter bit_ transmitterl(clk, reset, wave enable[@],
swell period, leds[0]);

bit_transmitter bit_transmitter2(clk, reset, wave_enable[1],
swell period, leds[1]);

bit transmitter bit_transmitter3(clk, reset, wave _enable[2],
swell period, leds[2]);

bit transmitter bit_ transmitter4(clk, reset, wave enable[3],
swell period, leds[3]);

bit transmitter bit_transmitter5(clk, reset, wave_enable[4],
swell period, leds[4]);

endmodule

module panel decoder(input logic [2:0] wave_height,
output logic [4:0] wave_enable);

always_comb
if (wave_height < 3'd2) wave_enable = 5'b00001;

else if (wave_height == 3'd2) wave_enable = 5'b00011;
else if (wave_height == 3'd3) wave_enable = 5'b00111;
else if (wave_height == 3'd4) wave_enable = 5'b01111;
else wave_enable = 5'b11111;

endmodule

module bit transmitter (input logic clk, reset, wave _enable,
input logic [4:0]
swell period,
output logic out);

typedef enum logic [1:0] {WAITING, WRITING, DELAY ,DONE} statetype;
statetype state, next_state;

logic [5:0] bit_counter,led num, wave_num, counter, next_ counter,
low_level;

logic [6:0] bit_index;

logic [7:0] total leds;

logic

logic

logic
one

logic

logic

logic
very light;

assign
assign
assign
assign
assign
assign

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

// assign curr_color = increment ? 24'b000111110000000000011111 :

[22:0]
[23:0]
[24:0]

delay counter;
curr_color;
color [23:0]; // 25 leds with 24 bits of color for each

[25:0] delay timer;
increment;

[23:0] dark, medium_dark, teal, medium_light, light,

dark = 24'h1f001f;
medium_dark = 24'h921156;

teal = 24'haboo47;
medium_light = 24'he9449c;
light = 24'hffddef;

very light = 24'hffffff;
color[Q] dark;

color[1] dark;

color[2] dark;

color[3] dark;

color[4] medium_dark;
color[5] medium_dark;
color[6] medium_dark;
color[7] medium_dark;
color[8] = teal;

color[9] = teal;
color[10] = teal;
color[11] = teal;
color[12] = medium_light;
color[13] = medium_light;
color[14] = medium_light;
color[15] = medium_light;
color[16] = light;
color[17] = light;
color[18] = light;
color[19] = light;
color[20] = very light;
color[21] = very light;
color[22] = very_ light;
color[23] = very_light;

24'p111111111111212121211111111;
assign curr_color = wave_enable ? color[led num] :
24 'b000000000000000000000000 ;
// assign curr_color = wave_enable ? teal : 24'b00000000000VVV000VVV0000 ;
// assign color = wave_enable ? ((increment ?
24'b000111110000000000011111 : 24'b111111111111111111111111)) :
24 'b00000000000000000000000 ;
assign total leds = 8'd24;
assign curr_bit (led_num < wave_num) ? curr_color[bit_counter] :0 ;
//color[bit_index];
// assign curr_bit
//color[bit_index];
assign low_level = curr_bit ? 6'd4 : 6'd9;
assign out = ((state == WRITING)) ? (counter > low_level) : 1'b@;
assign delay timer = swell period*12000000/48 -7488;

(led_num < wave_num) ? color[bit counter] :0 ;

always ff @(posedge clk, posedge reset)

if (reset) begin
state <= WAITING;
led num <=0;
wave_num=1;
bit counter <=0;
bit_index <= 0;
delay counter <=0;
increment <=1;

end

else
begin

state <= next_state;
counter <= next_counter;

if (bit_counter==6'd24) 1led num
else if (state == DELAY) led num
else led num = led num;

led num +1'b1;
9;

if (state == DELAY & next_state == WAITING) begin
if (increment) wave_num = wave_num +1'b1l;

else wave_num = wave _num - 1'bl;

end

6'do;

1'b1;

end

always_comb

else wave_num = wave_num;

if (bit_counter == 6'd24 | state == DELAY) bit_counter

else if (state === WAITING) bit counter = bit_counter +

else bit_counter = bit_counter;

if (state == DELAY) bit_index = 0;
else if (state == WAITING) bit_index = bit_index +1;
else bit_index = bit_index;

if (state == DELAY) delay_counter = delay_counter +1;
else if (state == WAITING) delay_counter = 0;
else delay counter = delay_ counter;

if(wave_num == total_leds) increment = 0;
else if (wave_num == 'd@) increment = 1;
else increment = increment;

case (state)

WAITING:

begin

if (led_num==total leds) begin
next state = DELAY;
next_counter = 6'dO;
end

else begin

next state = WRITING;
next_counter = 6'd13;
end

end

WRITING:

if (counter == @) begin

next state = WAITING;
next_counter = 6'dO;

end else begin

next_state = WRITING;
next_counter = counter - 6'dl;

end

DELAY:
if (delay counter > delay timer) begin // 7m is 17.4s for
30 leds
next_state = WAITING;
next counter = 6'dO;
end
else begin
next state = DELAY;
next_ counter = 6'dO;
end
DONE: begin
next_state = DONE;
next counter = 6'do;
end
endcase
endmodule
Software

main.c

10
100000

wave height[9] = {0x04, 0x03, 0x02, 0x00, 0x05,0x04, 0x03, 0x02, 0x03};
swell period[9] = {0x0A,0x14, 0x05, 0x10, 0x01, 0x03, 0x05, 0x02, Ox1F};
weather[9] = {0x01, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04};

getHour () {

hours;
bit zero = digitalRead(
bit one = digitalRead(

if (bit zero && bit one) hours = 8;

else if (bit one) hours = 4;

else if (bit zero) hours = 2;

else hours = 0;

return hours;

playTrackl () {

pinMode (
pinMode (
pinMode (

pinMode (

digitalWrite (
digitalWrite (
digitalWrite (
digitalWrite (

playTrack2 () {
pinMode (,

pinMode (,

pinMode (

pinMode (

digitalWrite (
digitalWrite (
digitalWrite (

playTrack3 () {
pinMode (’
pinMode (’
pinMode (’

pinMode (’

digitalWrite (
digitalWrite (

playTrack4 () {
pinMode (’
pinMode (’

pinMode (’

pinMode (’

digitalWrite (

configureFlash () ;

configureClock() ;

->AHB1ENR.GPIOAEN
->AHB1ENR.GPIOBEN

hour, curr hour;

hour = 0;

while (1) {

curr hour = getHour () ;

if (hour != curr hour) {

uint8 t dataToSend;

dataToSend = (swell period[curr hour] << 3) + wave height[curr hour];

digitalWrite (v ;1)
spiSendReceive (dataToSend) ;

while (->SR.BSY) ;

digitalWrite (, ; 0)g

if (weather[curr hour] == 0x01) { playTrackl();}

else if (weather[curr hour] == 0x02) { playTrack2();}
else if (weather[curr hour] == 0x03) { playTrack3();}
else {playTrack4();}

}

hour = curr hour;

}

#include "STM32F401RE SPI.h"

#include "STM32F401RE RCC.h"

#include "STM32F401RE GPIO.h"

spiInit (uint32 t br, uint32 t cpol, uint32 t cpha) {

—->AHB1ENR.GPIOAEN Lg
->AHB1ENR.GPIOBEN 1lg

->APB2ENR |=

->0OSPEEDR (0b11 <<

.BR = br;
.CPOL = cpol;
.CPHA = cpha;
.LSBFIRST = 0;
.DFF = 0;
.SSM = 0;
. SSOE

’

1
1

.MSTR

’

.SPE = 1;

uint8 t spiSendReceive (uint8 t send) {
while (! (->SR.TXE)) ;
->DR.DR = send;
while (! (->SR.RXNE)) ;
uint8 t rec =

return rec;

uintl6é t spiSendReceivel6 (uintl6 t send)
digitalWrite (, 6, 0);
->CR1.SPE = 1;

->DR.DR = send;

while (! (->SR.RXNE)) ;

uintl6é t rec = ->DR.DR;

->CR1.SPE = 0;
digitalWrite (

return rec;

{

#ifndef

#define

{
uint32 t CPHA

~.

uint32 t CPOL

~.

uint32 t MSTR

uint32 t BR

~.

uint32 t SPE

~.

uint32 t LSBFIRST

~.

uint32 t SSI

uint32 t SSM

uint32 t RXONLY

~.

uint32 t DFF

~e

uint32 t CRCNEXT

~e

uint32 t CRCEN

~.

uint32 t BIDIOE

~.

uint32 t BIDIMODE

I - e e N S S N N T =
~

(o)
~.

uint32 t

} SPI _CR1 bits;

{
uint32 t RXDMAEN
uint32 t TXDMAEN

uint32 t SSOE

uint32_t

uint32 t FRF
uint32 t ERRIE
uint32 t RXNEIE
uint32 t TXEIE
uint32 t

} SPI_CR2 bits;

{
uint32 t RXNE

uint32 t TXE

~.

uint32 t CHSIDE

~.

uint32 t UDR

~e

uint32 t CRCERR

~.

uint32 t MODF

uint32 t OVR

~.

uint32 t BSY

~.

uint32 t FRE

uint32 t DFF

~.

uint32 t CRCNEXT

~.

uint32 t CRCEN

uint32 t BIDIOE

~.

uint32 t BIDIMODE

~.

1
1
1
1
1
1
1
1;
1
1
1
1
1
1
1

uint32 t

o

} SPI_SR bits;

uint32 t
uint32 t

} SPI DR bits;

{
SPI_CR1 bits CR1;

SPI_CR2 bits CR2;

SPI_SR bits SR;

uint32 t CRCPR;

uint32 t RXCRCR;

uint327t TXCRCR;

I2SCFGR;

uint327t I2SPR;

} SPI TypeDef;

SPI TypeDef *

spilInit (uint32 t clkdivide, uint32 t cpol, uint32 t ncpha);

uint8 t spiSendReceive (uint8 t send);

uintl6 t spiSendReceivel6 (uintl6 t send);

#endif

#include "STM32F401RE GPIO.h"

pinMode(GPLOiType)ef* GPIO PORT PTR, function) {
switch (function) {

case
GPIO PORT_ PTR->MODER
break;

case
GPIO PORT PTR->MODER (Obl << 2*pin);
GPIO PORT PTR->MODER ~(0bl << (2*pin+l));
break;

case
GPIO PORT PTR->MODER ~(0bl << 2*pin);
GPIO PORT PTR->MODER (Obl << (2*pin+1));
break;

case

GPIO PORT PTR->MODER (0bll << 2*pin);

break;

digitalRead (GPIO TypeDef* GPIO PORT PTR,

return ((GPIO_PORT PTR->IDR) >> pin) & 1;

digitalWrite (GPIO TypeDef* GPIO PORT PTR,
if(val == 1) {
GPIO PORT PTR->ODR |= (1 << pin);
}
else if(val == 0) {

GPIO PORT PTR->ODR &= ~(1 << pin);

togglePin (GPIO TypeDef* GPIO PORT PTR, pin) {

GPIO PORT PTR->ODR "= (1 << pin);

#include <stdint.h>

{
uint32 t MODER;
uint32 t OTYPER;
uint327t OSPEEDR;
uint32 t PURPDR;
uint32 t IDR;
uint32 t ODR;
uint32 t BSRR;
uint32 t LCKR;
uint32 t AFRL;
uint327t AFRH;

} GPIO TypeDef;

GPIO TypeDef *
GPIO TypeDef *

GPIO TypeDef *

pinMode (GPIO TypeDef *, function) ;

digitalRead (GPIO TypeDef

digitalWrite (GPIO TypeDef

togglePin (GPIO TypeDef *,

FLASH.c

#include "STM32F401RE FLASH.h"

configureFlash ()
->ACR.LATENCY

—>ACR.PRFTEN

FLASH.h

#include <stdint.h>

’

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} ACR bits;

ACR bits
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t

{
LATENCY

PRFTEN
ICEN
DCEN
ICRST
DCRST

{

ACR;
KEYR;
OPTKEYR;
SR;

CR;
OPTCR;
OPTCR1;

} FLASH TypeDef;

FLASH TypeDef *

configureFlash () ;

#include "STM32F401RE RCC.h"

configurePLL () {

->CR.PLLON =

while (->CR.PLLRDY

—>PLLCFGR.PLLSRC
->PLLCFGR.PLLM
->PLLCFGR.PLLN
->PLLCFGR.PLLP

->CR.PLLON = 1;
while (->CR.PLLRDY == 0);

configureClock () {

->CFGR.PPRE2

->CFGR.PPRE1

->CR.HSEBYP = 1;
->CR.HSEON = 1;
while (! ->CR.HSERDY) ;

configurePLL() ;

->CFGR.SW = ;
while (->CFGR.SWS != 0bl0) ;

SystemCoreClock = 84000000;

#include <stdint.h>

uint32 t SystemCoreClock;
#define 8000000

#define

, co
#define

#define

#define
#define

#fdefine

{
uint32 t HSION

~.

uint32 t HSIRDY

uint32 t

~.

~.

uint32 t HSITRIM
uint32 t HSICAL

uint32 t HSEON

~.

uint32 t HSERDY

uint32 t HSEBYP

~.

uint32 t CSSON

N = T = = e TS = S SR
~

~.

uint32_t

uint32

uint32

{
uint32
uint32

uint32

uint32 t

uint32
uint32
uint32
uint32

uint32

} PLLCFGR bits;

} CFGR bits;

{
uint32
uint32
uint32
uint32

uint32

uint32 t

uint32
uint32
uint32
uint32

uint32

uint32 t

{

uint32

uint32 t

uint32
uint32

uint32

uint32 t

uint32

t

t

t

t

t

+

t

t

t

t

=

t

t

t

t

t

+

t

t

t

t

t

t

t
+
t
t
t
t

=

PLLON
PLLRDY
PLLI2SON
PLLI2SRDY

PLLSRC

PPRE1
PPREZ2
RTCPRE
MCO1
I2SSCR
MCO1PRE
MCOZ2PRE
MCO2

GPIOAEN
GPIOBEN
GPIOCEN
GPIODEN
GPIOEEN

GPIOHEN

~. ~. ~.

~e

[~y I~y [l = [~y N = o) [e))
~e ~. ~. ~.

~.

~. ~e ~. ~.

~.

~. ~. ~. ~. ~.

N W w = N W w N N N
~.

~.

uint32 t

uint32 t

uint32 t DMALEN

uint32 t DMAZEN

uint32 t

} AHB1ENR bits;

CR bits

PLLCFGR bits PLLCFGR;

CFGR bits

uint32_t

uint32 t AHBI1RSTR;

uint}Zit AHB2RSTR;

uint32 t AHB3RSTR;

uint32 t RESERVEDO;

uint32 t APB1RSTR;

uint32 t APB2RSTR;

uint32 t RESERVED1 [2] ;

AHB1ENR bits AHBIENR;

uint32 t AHB2ENR;

uint32 t AHB3ENR;

uint32 t RESERVED2;

uint32 t APB1ENR;

uint32 t APB2ENR;

uint32 t RESERVED3[2] ;

AHB1LPENR;

uint32 t AHB2LPENR;

AHB3LPENR;

uint32 t RESERVED4;

uint32 t APB1LPENR;

uint32 t APB2LPENR;

uint32 t RESERVEDS [2] ;

uint32 t BDCR;

uint32 t

uint32 t RESERVED6 [2] ;

uint32 t SSCGR;

uint32 t PLLI2SCFGR;

uint32 t RESERVED7 [1] ;

uint32 t DCKCFGR;

} RCC_TypeDef;

RCC TypeDef *

configurePLL () ;

configureClock() ;

STM32F401RE.h

Python Script for Ocean Data

queryOceanData-New-Coordinate.py

Website for Marine Data: https://stormglass.io/
API key:
e5275c9c-4ce7-11ec-ba81-0242ac130002-e5275d5a-4ce7-11lec-ba81-0242ac130002

import requests
import arrow
import json

import numpy as np

LATITUDE = 33.65550
LONGTITUDE = -118.00710

response = requests.get(
"https://api.stormglass.io/v2/weather/point’,

params={
‘lat': LATITUDE,
‘Ing': LONGTITUDE,
"params': ', '.join([
'waveHeight',
'wavePeriod"',
'waveDirection',
'airTemperature',
'waterTemperature’,
'swellPeriod’,
'gust’,
'cloudCover'
1),
s

headers={
'Authorization’:
'e5275c9c-4ce7-11ec-ba81-0242ac130002-e5275d5a-4ce7-11ec-ba81-0242ac130002'
}

Do something with response data.

json_data = response.json()

print(json.dumps(json_data, indent=1))

print("There are two keys from the JSON object. 'hours' = actual marine
data 'meta' = info about your actual API request: ",json_data.keys())
print("Here is the meta data: \n", json.dumps(json_data["meta"], indent=1))
print("Example of data getting data first from: ",

json_data["hours'][@]['time"'])

def printData(param):
dataSource = 'meteo’
metersToFeet = 3.28084
for thing in json_data["hours']:
print("Time: " + str(thing["time"]) + str(": "), param + str(": ")
+ str(int(thing[param][dataSource]*metersToFeet)))

def printTemperature(param):
dataArray = []
dataSource = 'noaa‘
for thing in json_data["hours']:
dataArray = dataArray + [thing[param][dataSource]*(9.0/5.0)+32]
print("Time: " + str(thing["time"]) + str(": "), param + str(": ")
+ str((thing[param][dataSource]*(9.0/5.0)+32)))

return dataArray

temperature = printTemperature('waterTemperature')
temperature = np.array(temperature)
print(np.ceil(temperature).astype(int))
printData('swellPeriod")

printData('waveHeight')

