MC You

E155 Final Project
December 10, 2021
Santiago Rodriguez and Kariessa Schultz

Abstract

The goal of this project was to create an audio-mixing station which uses two stepper motors to
play a song and plays beat sequences according to user input on a speaker. To create this
system, we used the STM32F401RE microcontroller (MCU) and the MAX1000 board (FPGA).
We wrote an 12C driver for the MCU to talk to a digital-to-analog converter (DAC), developed
two novel encodings: one to hold the stepper motor audio data and the other for the FPGA to
send the MCU commands over SPI, and wrote multiple finite state machines on the FPGA to
process user input. We also created a custom box to hold our breadboards, MCU, and FPGA, to
present a nicer interface for the user. The microcontroller is responsible for keeping track of the
system’s state including remembering two sequences of beats entered by the user, whether or
not the stepper motor song is playing, and the current progress through the song. The FPGA
handles user input, processing sequences of switch presses into abstract syntax which is sent
to the MCU over an SPI link.

Introduction

Music production and consumption is higher than ever. We wanted to make a musical product
that would allow people to play with a song in ways like a DJ. This is how we came up with
functionality like putting beats over the song and jumping back to a specific point in time in the
song. Inspired by the creativity of some artists on Youtube, we decided to use stepper motors to
play our music.

The top-level diagram of the system is shown in Figure 1. The user presses the buttons (a
matrix keypad and two recording buttons), and the resulting signals are sent to the FPGA. See
Figure 2 for the available user commands.

The FPGA handles switch bounce and, if the user is recording a sequence, stores the series of
button presses and the times between each press in memory. The FPGA converts this data into
byte-long commands which are sent to the MCU over SPI. If the command indicates that there
is a sequence to be read, then the MCU will keep running the SPI until it retrieves all of the data
from the FPGA. The MCU then responds appropriately by updating its state, which is a set of
global variables controlling its behavior and the saved beat sequences. In the MCU’s main
function, it uses time multiplexing to send audio data over an I2C link to the DAC in parallel with
PWM signals to the motor drivers. This outputs sequences of beats on the speaker and
determines the specific note that the motors play, respectively. Interrupts handle the inputs to
the MCU from the FPGA and govern the speaker and stepper motor behavior accordingly.

Block diagram

SPL q [} o

D s N S

| \xﬁ

i TLL

| T .

Dac Ao dio M'Ei'.t'.{r 7| Ppenlker
o
L1247 waobor davers

12 J\(
TS Whabp

g

—

1 TS 400
Grepper WhoKS

Figure 1. High level block diagram showing the flow of data through the system

User input

Desired function

Single byte encoding sent
over SPI

stepper motor song

Press left record switch, Record all presses of ‘1’, ‘2’, 0x05

followed by a sequence of and ‘3’ keys on the keypad

keys on the keypad and the times between them,
and save this data in the
MCU in save slot 1

Press right record switch, Record all presses of ‘1’, ‘2’, 0x06

followed by a sequence of and ‘3’ keys on the keypad

keys on the keypad and the times between them,
and save this data in the
MCU in save slot 2

Press key ‘4’ Play the sequence saved in 0x07
save slot 1

Press key ‘5’ Play the sequence saved in 0x08
save slot 2

Press key ‘7’ Repeatedly play the 0x09
sequence saved in save slot
1, or stop playing it on repeat

Press key ‘8’ Repeatedly play the 0x0A
sequence saved in save slot
2, or stop playing it on repeat

Press key ‘6’ Pause or resume stepper 0x0D
motor song

Press key ‘9’ Play stepper motor song from | 0x04
beginning

Press key Mark spot in stepper motor 0x0C
song

Press key ‘0’ Go back to marked spot in 0x0B

Figure 2. Table showing available user commands, what they do, and how they are internally

encoded

Hardware Overview

New hardware

To play the sequences of beats on a speaker, we use a MCP4725 digital-to-analog converter
(DAC) attached to a LM386 audio amplifier. The MCU sends the desired output voltage to the
DAC over an 12C link. All devices on an 12C link use the same data wire (SDA) to communicate,
with a clock wire (SCK) controlling when to read input from the data wire. In order to
communicate with the DAC, the MCU first sends the DAC’s address over SDA, waits for an ACK
bit which indicates that the DAC has seen its address and is listening, and then sends another
byte which tells the DAC what its output voltage should be. The DAC also ACKs the voltage
byte.

This communication is relatively slow, at about 400 Kbps. Considering that our audio sampling
rate is 8 KHz, the 12C’s SDA is almost always active while the MCU is playing a beat.

The LM386 then amplifies the DAC’s voltage signals into a large waveform which is played by
the speaker.

To generate the sound for our song, we use stepper motors. These motors are composed of
permanent magnets which are turned by electromagnets. Pulses are sent to the motor to turn
the rotors by magnifying different stators across the sides. There are some teeth along the
inside which the rotors click against. By controlling the frequency that the rotors turn, we can
play different notes which is how we generate the music for our song. We use two stepper
motors to have a bass line and a treble line, but they are easily interchangeable.

In order to get the motors to turn at the right frequency, we use L297 motor drivers and L293D
H-bridges. The motor driver takes in a frequency generated by the MCU and maps it to the
correct signals to send to the motor to turn the motor at that frequency. The H-bridge takes care
of making sure that the right stators are powered as the driver dictates and makes sure they
have enough power to turn. We attached a power supply to the circuit to power the H-bridges so
that we wouldn’t draw too much current from the MCU. Additionally, the motor drivers are used
to set the motors in half step mode as opposed to full step mode.

Schematics

+3.3V
47 k2 % 47 k2 %

MCP4725 DAC
PES
1 wouT 2 AD
PBS 3°SDA 4 SCLp—
5 GND 6_WDD
J v
LM386 Audio Amiplifier
33k0 g 1 5
—{ GAIN GAIN =
2 NPUTBYPASS v
i ass b
3 6
T[+ NPUT \.rs%
1300 % —GND VOUT |—
=~
12 k0
AN— vz
Sparkfun 3x4 matrix keypad
PIN_F1 12k0
| —1 zcoL
PIN_H13 3 rowl 4-colLl —MNAN— Pii_EL
5 ROW4 6 COL3
PIM_HE E-EB-":E 2l 12 k0
| E_RUN -
-‘W'H,p— PIMN_C1
PIN_E4 -
+3.3Y
LED green diffused
2k0 2k0 s,
PAd —B@
PIN_E3 I-lf:‘ I-lT
PIN_K10

Figure 3. Speaker and DAC
circuit diagram. The DAC
takes input from the MCU
over an 12C link and adjusts
its voltage output
appropriately. The audio
amplifier amplifies the DAC’s
signal and sends it to the
speaker.

Figure 4. User interface
circuit diagram. Input from
the keypad and switches is
sent to the FPGA for
processing. The green
diffused LED turns on when
the MCU is finished with the
initialization steps and the
system is ready to use.

‘ L2530 H-Bridge 17HS4401 stepper motor
e fy A
— 0 65 ~A
=iz L5 B
s (= -8
from power supply e E 7 .'":'
45— e [=
3 e
oy A
L297 Motor Driver PB4
Al il ey
=1 2 Cal~Cow
a AB
a i halfi-full
== 8 B3
— 10 19 ~reset
from MCLU —] 12 20 PALD
5 — w—t 16 2

L2530 H-Bridge 17HS4401 stepper motor

A
A
iy

Lal
E
B

20
)
A
[WECT
L2587 Motor Diriver
Al - Lokl
e

5
1

‘En

a
12
13

9
8

] [
EXEERIEY

o

el L
b 3 3 05 0) 8 L

=115
15

Figure 5. Stepper motor circuit diagram. The MCU controls the stepper motors by sending a
clock signal to the motor drivers. These, along with the H-bridges, power the stators in the
motors at the right frequency to play notes.

MCU Design

The MCU sends signals to the DAC to tell it to change its output voltage level in order to play
the beats on the speaker. Because the MCU communicates with the DAC over a 400 Kbps 12C
link, and our audio sampling rate is 8 Khz, when playing a beat, the MCU spends most of its
time waiting for the ACK bit from the DAC telling the MCU that the DAC has received the
command. Because the beat audio data is noise-tolerant (it does not matter if we send a frame
a little bit late), we made this functionality our main loop.

All other functionality is implemented using interrupts.

The MCU takes care of initializing the stepper motors and changing their frequency. To do this,
we use a timer (TIM2) that sends an interrupt to change the note values for the stepper motors

at 16th note intervals. 16th notes are commonly the subdivision of the beat of a song by four.
This allows us to control the duration of the notes with precision. When the interrupt occurs, 2
separate timers (TIM3 and TIM4) output the correct frequency for the note they are supposed to
play to the motor driver. They get the frequency from a list specific to each timer that has the
frequencies for each 16th note in the song. The index of the lists is incremented every time the
interrupt is sent by TIM2 to advance the lists through the song. TIM3 and TIM4 have their clocks
prescaled to a smaller frequency because they don’t have enough bits to count to to output the
right frequencies otherwise.

The MCU also responds to user commands from the FPGA (see table 1.2 for the full list). The
FPGA raises the voltage level of PA1 to tell the MCU that there is data to be read over SPI.
When PA1’s voltage goes high, it triggers an interrupt on the MCU. The MCU then reads a byte
from the FPGA over SPI and decodes it, according to the list of functionality in Figure 2.

For the non-recording user commands, the MCU updates a set of global variables. To pause the
song and play it again from the paused point, we simply turn off all the timer counters which
stopped them at their current values. Turning the counters on again for each timer starts it right
where it left off. To mark a point and go back to a marked point in a song, we kept track of how
far TIM2 is in the process of counting a 16th note. If a user pauses somewhere in the middle,
we want to make sure it starts off at the exact same point. To do this we store the timer value of
TIM2 and the index of the song notes lists and return to those values when going back to that
marked point.

For the recording commands, the MCU then reads in another 640 bytes from the FPGA over the
SPI link, interpreting them as an array of [beat, time] data, where the beat is an eight bit
encoding telling the MCU what beat to play, and the time is a 32-bit integer representing how
long to wait after starting playing the beat until playing the next one. Because the time is in
FPGA clock cycles (12 MHz), the MCU will convert the time to milliseconds before saving it in
the data structure for the appropriate beat sequence.

FPGA Design

The FPGA design consists of four main parts: an SPI module, an input processor module, a
memory module, and a commander module. See Figure 6 for the high level design.

The input processor module is responsible for processing user input into a reliable internal
representation. It consists of four submodules. One debounces the user input, signals the
commander when new input has been observed with the newCommand signal, and also signals
the commander whether or not that input is one of the recording buttons (keys ‘1,” 2,” or ‘3’) with
the recordCommand signal. Another turns the matrix keypad inputs into a four bit internal
representation. Two other modules debounce the pushbutton inputs, one for each pushbutton.
Each debouncer module works the same way. After a change in input has been observed, they
go to an intermediate state and wait to make sure that the change in input is genuine before
transitioning to a different state in order to tell the rest of the system what the input is.

The SPI module shifts out the contents of the memory when it sees the clock line from the MCU
(sck) enabled. To do this, it has a shift register which resets to the contents of the memory on
the edge of sck when the data input line (sdi) goes high. This design is particularly useful
because it allows for code reuse. In one case, the SPI must output the single byte command. In
the other case, the SPI must output the single byte command and then keep outputting the rest
of the memory. By resetting whenever sdi goes high, a single SPI module is able to handle both
behaviors, without worrying about how many bytes have been read by the MCU or how many
bytes there are left to be read. As a consequence, when reading the SPI’'s memory, the MCU
must always output 0x10 on the sdi line when starting a new read, and the rest of the bytes it
sends must be 0x00.

The memory module is 648 bits of registers. The first byte is the first byte to be sent to the
FPGA. This command is the same as the internal representation of the keypad commands, as
long as a record button has not been pressed. When a record button is pressed and
saveCommand is asserted, the memory module will instead save a different byte, to tell the
MCU that it needs to read the rest of the memory in order to get the rest of the new beat
sequence. The next 640 bits are arranged as a sequence of [beat, time], where the beat is a
single byte encoding -- either 0x01, 0x02, or 0x03 for a real beat, or OxOF for an empty register
-- and the time is a 32 bit integer, with the FPGA’s clock cycles as a unit. Each [beat, time] pair
is implemented as a pair of enabled registers. The current value of regPointer, updated by the
commander, determines which register pair is enabled when saveCommand is asserted. Only
one register pair is enabled at a time. Also, when the clearCommand input is inserted, the
memory module will save OxOF in the beat register instead of the last keypad button pressed.
When the MCU reads in 0xOF, it will know that it is not a valid beat and it can stop playing the
sequence. This allows the FPGA to store any number of beats, up to a maximum of 16.

The commander module is a finite state machine responsible both for updating the memory and
for signalling the MCU to read the memory over SPI. See Figure 7 for a detailed diagram of the
states, transitions, and outputs. If neither record button is pressed, then the commander simply
detects when there is a new input from the keypad, asserts saveCommand to tell the memory
module to save the command in the memory that will be sent out to SPI, and asserts the ready
signal to tell the MCU that there is input to be read over SPI. It will deassert ready once the
input has been read. If a record button is pressed, then the commander asserts saveCommand
to tell the memory module to save the record command, then waits for recordCommand to be
asserted, meaning that a key on the keypad has been pressed. It then transitions to another
state where it increments a stopwatch to measure how much time passes between beats. When
recordCommand is asserted again, then the commander increments regPointer, asserts
saveCommand to tell the memory module to save the current beat and time, and transitions
back to the stopwatch state. When a record button is no longer pressed, if 16 beats have been
entered, then the commander either asserts the ready signal and waits for the SPI transition to
be over. Otherwise, it transitions to another state, asserts clearCommand, and increments
regPointer until the rest of the registers have been cleared by the memory module.

Pk

. TrULenSLy Cmn - -)
‘A"ﬁi""é ek o Lovtama vn & et G d WA Evnle oy <PT
3 T SN
L b tte g
recad Coimvmaon & P R ewery
[T
retovd Fresced SCWQEEM;,.
Seud Cﬂw\rﬂm'ﬂ&‘ (
) Pty =
Shopuade
. i—f_‘S\ 5
(AR 1 -

| |
- J—— E— R

Lefd poddocklen pre 35

wialak usiourden Frasce.b \

recdny {}

Figure 6. High level overview of FPGA modules and data flow.

D
recovd Vressed =) s

s :
S "lwftw.ﬂ.g S
g g\ Sewe Covmmend = —> 3 _\L\é:' Sq- . ; e
- v wede =
st T 1) S P
\

recur ¢ Prassed=t
AP

S recoce Comwand - o
=) \
stave Lammmund

rocoidPrempned 7|
an®
T 6 Cordh Conmmnard =€

recodPressed =
AND
rowed Loneoniad =\

"efdw\erz WU;\):,}V.L" 41

SuaeTivie)
Stve Beent =)
oot Commmand ="

YePuinter
= ve-i?ﬁ wA e

reae uder
= m%\":‘...u ra)
=\

Figure 7. Commander finite state machine, with states, transitions, and outputs. Outputs are set
to zero by default. For example, in the SO state, saveCommand is equal to 0.

Results and Discussion

In the end, our system performed all of its tasks as listed in the revised project proposal. Our
project was able to play a song of about 2 minutes and 15 seconds on stepper motors, start the
song from the beginning at any time, pause/play the song, mark a point to jump back to, record
sequences of beats to play on the speaker, play up to two saved sequences of beats on the
speaker, and loop the sequences of beats on the speaker.

At the very end, we noticed some issues with the motors making a grinding sound when
they weren’t supposed to. We suspect that either the chips might have been heating up after
being powered for too long, or the motors were drawing too much current from the power supply
and needed to be regulated by lowering the voltage.

We also encountered some problems related to the wiring when assembling the final
box, due to wires coming loose or coming in contact with each other. In the future, we would like
to clean up the wiring so less wires cross each other, try to put all of the hardware on one
breadboard, and clip the stripped sections of the wires so they are less likely to contact each
other.

All'in all, it is a fun system that plays a cool song and allows users to act like a DJ just as
intended.

References

1. “12-Bit Digital-to-Analog Converter with EEPROM Memory in SOT-23-6 Datasheet.”
Microchip.

2. “2 Phase Hybrid Stepper Motor 17HS4401.” MotionKing (China) Motor Industry Co.

“External Interrupt Using Registers " Controllerstech.” ControllersTech, 15 July 2021,

https://controllerstech.com/external-interrupt-using-registers/.

“L293x Quadruple Half-H Drivers Datasheet.” Texas Instruments, Jan. 2016.

“The L297 Stepper Motor Controller User Guide.” ST.

“L297 Stepper Motor Controllers Datasheet.” ST.

SFUptownMaker. “I2C.” Sparkfun, https://learn.sparkfun.com/tutorials/i2c/all.

“Bare Metal’ STM32 Programming (Part 4): Intro to Hardware Interrupts.” Vivonomicon's

Blog,

https://vivonomicon.com/2018/04/28/bare-metal-stm32-programming-part-4-intro-to-hard

ware-interrupts/.

w

® N OA

Bill of Materials

ltem Quantity Manufacturer Cost per unit Total cost
MCP4725 DAC |1 Adafruit $4.95 $4.95
MAX1000 1 Trenz Electronic | $26.66 $26.66

Nucleo-F401RE STM $13.83 $13.83
MAX1000 Shield OSH Park $6.80 $6.80
PCB
Breadboard OSH Park $6.24 $6.24
Cobbler PCB
Stackable SparkFun $1.50 $1.50
headers kit Electronics
40-pin male Sullins $0.51 $1.02
breakable Connector
header Solutions
40-pin keyed Assman WSW $1.66 $1.66
ribbon cable Components
40-pin male Sullins $0.73 $1.46
vertical keyed Connector
header Solutions
14-pin female Sullins $0.91 $1.82
headers Connector

Solutions
USB A to Mini B Monoprice $1.21 $1.21
Cable White, 3 ft
USB A to Micro Monoprice $0.99 $0.99
B Cable Black, 3
ft
L293D H-bridge Adafruit $4.50 $9.00
17HS4401 Usongshine $9.98 $19.96
Stepper motor
L297 stepper STMicroelectroni | $4.89 $9.78
motor driver cs
3x4 matrix SparkFun $4.50 $4.50
keypad Electronics
Pushbutton Allied $3.36 $6.72
switch Electronics
LM386 audio Texas $1.50 $3.00
amplifier Instruments
47000 ohm Jameco $0.14 $0.28
resistor Electronics

3300 ohm JMar Vac $1.79 $1.79

resistor Electronics

330 ohm resistor Jameco $0.14 $0.14
Electronics

speaker Philmore $4.53 $4.53

1200 ohm Jameco $0.06 $0.12

resistor Electronics

2000 ohm All Electronics $0.06 $0.12

resistor

15000 ohm Jameco $0.06 $0.12

resistor Electronics

Green diffused Jameco $0.06 $0.12

LED Electronics

2200 ohm Jameco $0.06 $0.12

resistor Electronics

33 nF capacitor Mouser $0.36 $0.72

Electronics

Appendix A: C code

Main.c

<stdint.h>

"audio data.h"
"STM32F401RE TIM2 5.h"
"STM32F401RE _TIM10 11.h"
"STM32F4OIRE7GPIO.h"
"STM32F401RE _RCC.h"
"STM32F401RE FLASH.h"
"STM32F401RE I2C.h"
"STM32F4OIRE7EXTI.h"
”STM32F4OIRE75PI.h”
"main.h"

"STM32F401RE SYSCEG.h"

"songs.h"

uint8 t stepper song is paused

uint32 t stepper marked index

uintl6é t stepper song index =

uint32 t stepper tim position

play seg one once
play seq two once

repeat seq one =

O
repeat seqg two 0;

uint8 t DAC ADDRESS = 0b11000100;

uint8 t MAX NUMBER OF BEATS = 16;

BeatChoice {ZERO, ONE, TWO, NONE};

{

uintl6é t rest;

BeatChoice beat;
} SegElement;

SegElement seq one[l6];
SegElement seq two[l6];

#define

configureInterrupts (

->APB2ENR |= (1<<14);

->EXTICR1 &= ~ (0xf<<4);
= (1<<1);

->RTSR |= (1<<1);

->FTSR &= ~ (1<<1);

(EXTI1 IRQn, O0);
(EXTI1 IRQOn);

(TIM2 IRQn, 2);
(TIMZ IRQn);

readBeatsAndTimes (SegElement sequencel[]) {

for (i = 0; i < MAX NUMBER OF BEATS; ++i) {

uint8 t beat = spiSendReceive (0x00) ;
if (beat == 1) {
sequence[i] .beat = ZERO;
} else if (beat == 2) {
sequence[i] .beat = ONE;
} else if (beat == 3) {
sequence[i] .beat TWO;
} else {

sequence[i] .beat NONE ;

uint32 t time = spiSendReceive (0x00) ;
time = time << 8;

time time + spiSendReceive (0x00) ;
time time << 8;

time time + spiSendReceive (0x00) ;
time time << 8;

time time + spiSendReceive (0x00) ;

sequence[i] .rest = (time) / (12000);

EXTI1 TIRQHandler (

->PR & (1 << 1)) {

= (1 << 1)

uint8 t command = spiSendReceive (0x80) ;

if (command == 0x0D) {

if (!stepper song is paused) {
->CR1.CEN
->CR1.CEN
->CR1.CEN
} else {
->CR1.
->CR1.
->CR1.
}
stepper song is paused = !stepper song is paused;

} else if (command == 0x0C) {

stepper tim position = ->CNT;

stepper marked index = stepper song index;

} else if (command == 0x0B) {

->CR1.CEN = 0;

->CNT = stepper tim position;

->CR1.CEN = 1;
changeMotorPWM (, song[stepper marked index]);
changeMotorPWM (, song2[stepper marked index]) ;
stepper song index = stepper marked index;

} else if (command == 0x04) {

->CR1.CEN 0¢
->CNT = 0;
->CR1.CEN
changeMotorPWM (
changeMotorPWM (
->CR1.CEN
->CR1.CEN

stepper song index = 0;
stepper song is paused = O;

else 1if (command == 0x05) {

readBeatsAndTimes (seq_one) ;

else if (command == 0x06) {

readBeatsAndTimes (seq two) ;

else if (command == 0x07) {

play seg one once

else 1if (command ==
play seq two once

else 1f (command ==

repeat seq one = !repeat seq one;

else 1f (command == 0x0A) {

repeat seq two = !repeat seq two;

else {

TIM2 IRQHandler (

->SR.CC1IF == 1) {
->SR.CC1IF =
}
if (!stepper song is paused) {
changeMotorPWM (, 2*song[stepper song index]);
changeMotorPWM (, 2*song2[stepper song index]) ;

stepper song index++;

if (stepper song index > (song) / (song[0])) {

stepper song index = 0;
stepper song is paused
changeMotorPWM (
changeMotorPWM (

resetRestOfSequence (SegElement sequence[], uint8 t index) {

for (1 = index; index < 16; ++index) {

sequence[i] .beat = NONE;

uint8 t* selectAudioData (BeatChoice number, * arraySize) {

if (number == ZERO) {
(*arraySize) = (notesl) / (notesl[0]);
return notesl;
} else 1if (number == ONE) ({
*arraySize = (notes2) /
return notes2;

} else if (number == TWO) {

*arraySize = (notes3) / (notes3[07]) ;
return notes3;
} else {

return

initializeAll (

configureFlash () ;

configureClock () ;

—->AHB1ENR.GPIOAEN 1g
—>AHB1ENR.GPIOBEN g
->APB1ENR g

1 << 3);
1<<21) ;

->APB1ENR
->APB1ENR

(

(
->APB2ENR (1<<17) ;

(1<<14);

—->APB2ENR

pinMode (8,)
pinMode (9,)
->AFRH |= 0b0100;
->AFRH |= 0b0100 << 4;
->0SPEEDR |= (3 << 16) | (3 << 18);

setPinToOpenDrain (

setPinToOpenDrain (

configurelInterrupts () ;

configureTimerl011 (
configureLongARRTimer (
configureMotorTimer (
configureMotorTimer (

configureDurationTimer (

->CR1.CEN
->CR1.CEN

configureI2C () ;

enable I2C();

I2C general call reset();
disable I2C();

resetRestOfSequence (seq one, 0);

resetRestOfSequence (seq two, 0);

digitalWrite (
digitalWrite (

digitalWrite (
digitalWrite (
digitalWrite (

playSequence (SegElement sequencel[]) {
For (i = 0; 1 < MAX NUMBER OF BEATS; ++i) {
if (sequenceli].beat != NONE) {

setTimerFromFreqlO11 (, 8000) ;
setTimerFromTime (, Sequence[i].rest);

->SR.CC1IF = O;

numFrames;

uint8 t* frameArray = selectAudioData (sequence[i].beat,

&numFrames) ;

frameIndex = 0O;

enable I2C();

while (1) {

if (frameIndex > numFrames - 1) {

break;

->SR.CCI1IF == 1) {
->SR.CC1IF =

uintl6 t frame = frameArray[frameIndex] <<

I2C fast write to DAC(DAC ADDRESS, frame);

frameIndex += 1;

}
disable I2C();

while (1) {
if (->SR.CC1IF == 1)
->SR.CC1IF = O;

break;

main () |

initializeAll () ;
digitalWrite (

while (1) {

if (play seg one once) {
playSequence (seqg_one) ;
play seqg one once = 0;

} else if (play seq two once) {
playSequence (seq_two) ;
play seqg two once = 0;

}

while (repeat seq one) {
playSequence (seqg_one) ;

}

while (repeat seq two) {

playSequence (seq two) ;

#define
#define

uint32 t *) O0xEOOOE100UL
uint32 t *) O0xEOOOE104UL
uint32 t * 0x40013800UL + 0Ox14UL

NonMaskableInt IROn

MemoryManagement IROn

BusFault TIRQOn

UsageFault IRQOn

SVCall IROn

DebugMonitor IRQn

PendSV_IRQOn

SysTick IROn

WWDG_ TRQOn

PVD_ IRQn

TAMP STAMP IRQOn

RTC_WKUP IRQn

FLASH TROn

RCC_IRQn

EXTIO IRQOn

EXTI1 IROn

EXTIZ2 IRQn

EXTI3 IROn

EXTI4 IRQOn

DMAl StreamO IRQn

DMA1l Streaml IRQn

DMAl Stream2 IRQn

DMA1l Stream3 IRQn

DMAl1l Stream4 IROn

DMA1l Stream5 IRQn

DMAl Stream6 IRQn

ADC_IRQn

EXTI9 5 IRQOn

TIM1 BRK TIM9 IRQOn

TIM1 UP TIM10 IRQOn

TIM1 TRG COM TIM1l IRQn

TIM1 CC_IRQOn

TIM2 IRQn

TIM3 TRQn

TIM4 IRQn

I2C1 _EV_IRQn

I2C1_ER IRQn

I2C2_EV_IRQn

I2C2_ER_IRQn

SPI1 IRQn

SPI2_ IRQn

USART1 IRQn

USARTZ IRQn

EXTI15 10 IRQn

RTC Alarm IRQn

OTG_FS_WKUP_IRQn

DMA1l Stream7 IRQn

SDIO_IRQn

TIM5 IRQn

SPI3 IRQn

DMA2 StreamO IRQn

DMA2 Streaml IRQOn

DMA2 Stream2 IRQn

DMA2 Stream3 IRQOn

DMA2 Stream4 IRQn

OTG_FS_TIRQn

DMA2 Stream5 IRQn

DMA2 Stream6 IRQn

DMA2 Stream7 IRQn

USART6_IRQn

I2C3_EV_IRQn

I2C3_ER IRQn

FPU_IRQn

SPI4 IRQn

} IRQn Type;

#define

#include "cmsis gcc.h"

#include "core cm4.h"

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} EXTI TypeDef;

#define EXTI TypeDef *

#include <stdint.h>

0x40023C00UL

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
bits;

ACR bits

uint32 t

uint32 t

uint32 t

uint32_t

uint32 t

uint32 t

{
LATENCY

PREFTEN
ICEN
DCEN

ICRST
DCRST

KEYR;

OPTKEYR;

SR;

CRg

OPTCR;

OPTCR1;

} FLASH TypeDef;

#tdefine FLASH TypeDef

configureFlash () ;

#endif

STM32F401RE_FLASH.c

#include "STM32F4OIRE_FLASH.h”
configureFlash () {

—>ACR.LATENCY
—->ACR.PRFTEN

#include <stdint.h>

} AFRL bits;

} AFRH bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

{
uint32 t
uint32 t

AFRHS

AFRHO

AFRH10
AFRH11
AFRH12
AFRH13
AFRH14
AFRH15

MODER;
OTYPER;

~. ~.

~e

~. ~.

~e.

4
4
4
4;
4
4
4
4

~.

uint32 t OSPEEDR;
uint32 t PURPDR;
uint32 t IDR;
uint32 t ODR;
uint32 t BSRR;
uint32 t LCKR;
uint32 t AFRL;
uint32 t AFRH;
} GPIO TypeDef;

GPIO TypeDef *
GPIO TypeDef *
GPIO TypeDef *

pinMode (GPIO TypeDef *, pin, function) ;

digitalRead (GPIO TypeDef *, pin) ;

digitalWrite (GPIO TypeDef *, pin, val) ;

setPinToOpenDrain (GPIO TypeDef* GPIO PORT PTR,

togglePin (GPIO TypeDef *, pin) ;

#endif

STM32F401RE_GPIO.C

#include "STM32F401RE GPIO.h"

pinMode (GPIO TypeDef* GPIO PORT PTR,

pin) ;

function)

{

switch (function) {

case
GPIO_ PORT PTR->MODER ~(0bll << 2*pin);
break;

case
GPIO_ PORT PTR->MODER (0bl << 2*pin);
GPIO_ PORT PTR->MODER ~(0bl << (2*pin+l));
break;

case
GPIO PORT PTR->MODER ~(0bl << 2*pin);
GPIO_ PORT PTR->MODER (0bl << (2*pin+l));
break;

case
GPIO PORT PTR->MODER (0b11l << 2*pin);

break;

setPinToOpenDrain (GPIO TypeDef* GPIO PORT PTR,
GPIO PORT PTR->OTYPER |= (1 << pin);

digitalRead(GPIOiTypeDef* GPIO_ PORT PTR,
return ((GPIO PORT PTR->IDR) >> pin) & 1;

digitalWrite (GPIO TypeDef* GPIO PORT PTR,
if(val == 1) {
GPIO PORT PTR->ODR |= (1 << pin);
}
else if(val == 0) {
GPIO PORT PTR->ODR &= ~ (1 << pin);

togglePin (GPIO TypeDef* GPIO PORT PTR, pin) {

GPIO PORT PTR->ODR ~= (1 << pin);

STM32F401RE_I2C.h

<stdint.h>

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

0x40005400UL

SMBTYPE
ENARP
ENPEC
ENGC
NO_STRETCH
START
STOP
ACK

POS

PEC
ALERT

~. ~. ~. ~. ~. ~.

~.

~. ~. ~e ~. ~e. ~e

e R N T e e T e e e e T o = W S S =
Qo

~.

uint32 t SWRST
uint32 t
} I2C CR1 bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

I2C _CR2 bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t
I2C OAR1 bits;

{
uint32 t
uint32 t

I2C DR bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

FREQ

ITERREN
ITEVTEN
ITBUFEN
DMAEN
LAST

ADDO
ADD7
ADD9
reservedl
reserved?2

ADDMODE

~. ~. ~.

~e

~. ~. ~.

[O T R e S e S L S)

(o)}

~.

~. ~. ~.

~.

~.

~.

R N e e e e
20

~.

}

}

}

uint32 t
uint32 t
uint32 t AF
uint32 t OVR
uint32 t PEC_ERR
uint32 t
uint32 t TIME OUT
uint32 t SMB ALERT
uint32 t

I2C _SR1 bits;

{

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t GENCALL
uint32 t SMBDEFAULT
uint32 t SMBHOST
uint32 t DUALF
uint32 t PEC
uint32 t

I2C_SR2 bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
I2C_CCR bits;

{
I2C _CR1 bits

I2C_CR2 bits

I2C_OARL bits

~. ~. ~. ~.

~.

~. ~.

~.

1
1
1
1
1
1;
1
1
8
1

(e)}

~e

uint32 t

I2C DR bits

I2C_SR1 bits

I2C_SR2 bits

I2C_CCR bits

uint32 t

uint32 t

} I2C TypeDef;

#define I2C TypeDef *

configureI2C () 5

enable I2C() i

disable I2C() 7

I2C write to DAC(uint8 t address, uintl6 t msg);

I2C fast write to DAC(uint8 t address, uintl6 t msg);
I2C general call reset() ;

I2C start and send address (uint8 t address);

#endif

STM32F401RE_I2C.c

#include "STM32F401RE_I2C.h"
#include "STM32F401RE RCC.h"

uint8 t DAC_WRITE COMMAND = 0b01000000;

configureI2C (

->APB1lENR |[= (1<<21);

->CR1.PE = O;

->CR1.SMBUS = 0;

->0OAR1.ADDMODE = O0;

->0AR1.reserved2 = 1;

=>CCR, TS =

->CCR.DUTY

->CR2 .FREQ

->CCR.CCR

->TRISE = 13;

enable TI2C(
->CR1.PE

disable TI2C(
->CR1.PE = 0O;

I2C start and send address(uint8 t address) {

->CR1.START = 1;

while (—>SR1.SB != 1);

address |= 0;

->DR.DR = address;

->SR1.ADDR != 1);

->SR2.MSL != 1);

I2C general call reset() |
I2C start and send address (0x00) ;
->DR.DR = 0x06;

->SR1.TxE != 1);

->CR1.STOP = 1;

I2C fast write to DAC(uint8 t address, uintl6 t msg)

{

I2C start and send address (address);

->DR.DR = (uint8 t) (msg >> 8);

->SR1.TxE != 1);

(uint8 t) (msg);

->SR1.TxXE != 1);

#include <stdint.h>

0x40023800UL

SystemCoreClock;

} CR bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

HSION
HSIRDY

HSITRIM
HSICAL
HSEON
HSERDY
HSEBYP
CSSON

PLLON
PLLRDY
PLLI2SON
PLLI2SRDY

PLLSRC

~e ~e ~e ~e ~e ~e

~e

~. ~. ~e. ~. ~.

~e

1
1
1
5
8
1
1
1;
1
4
1
1
1
1
4

~e.

uint32 t
uint32 t

} PLLCFGR bits;

} CFGR bits;

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} AHBLENR bits;

PPRE1
PPREZ2
RTCPRE
MCO1
I2SSCR
MCO1PRE
MCO2PRE
MCO2

GPIOAEN
GPIOBEN
GPIOCEN
GPIODEN
GPIOEEN

GPIOHEN

DMA1EN
DMAZEN

~. ~. ~. ~.

~.

~. ~. ~e ~e ~e

N W W P NN o w w NN DN
~.

~.

~. ~. ~. ~. ~e ~e

~.

~. ~e ~. ~. ~.

© B U W s RN R R e

~.

PLLCFGR bits

CFGR bits

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

AHBIENR bits

uint32 t

uint32 t

uint32_t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

PLLCFGR;

CEFGR;

CIR;

AHB1RSTR;

AHB2RSTR;

AHB3RSTR;

RESERVEDO;

APB1RSTR;

APB2RSTR;

RESERVEDL [2] ;

AHB1ENR;

AHB2ENR;

AHB3ENR;

RESERVEDZ ;

APB1ENR;

APB2ENR;

RESERVED3[2];

AHB1LPENR;

AHB2LPENR;

AHB3LPENR;

uint32 t

uint32 t

uint32 t

uint32_t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

RESERVED4 ;

APB1LPENR;

APB2LPENR;

RESERVEDS5[2] ;

BDCR;

CSR;

RESERVEDG6[2] ;

SSCGR;

PLLI2SCFGR;

RESERVED7[1];

DCKCFGR;

} RCC TypeDef;

#define RCC TypeDef *

configurePLL () ;

configureClock() ;

#endif

STM32F401RE_RCC.c

#include "STM32F401RE RCC.h"

configurePLL () {

->CR.PLLON = O;
while (->CR.PLLRDY != 0);

—->PLLCFGR.PLLSRC
->PLLCFGR.PLLM =
—->PLLCFGR.PLLN
->PLLCFGR.PLLP
—->PLLCFGR.PLLQ

->CR.PLLON = 1;
while (->CR.PLLRDY == 0);

configureClock () {

->CFGR.PPRE2 0b000;
->CFGR.PPRE1 0b100;

->CR.HSEBYP = 1;
->CR.HSEON = 1;
while (! —->CR.HSERDY) ;

configurePLL () ;

—>CFGR.SW = H
while (->CFGR.SWS != 0blO);

SystemCoreClock = 84000000;

STM32F401RE_SPLh

#include <stdint.h>

0x40013000UL

uint32 t

uint32 t

uint32 t

uint32 t BR
uint32 t SPE
uint32 t LSBFIRST

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} SPI CR1 bits;

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} SPI_CR2 bits;

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} SPI SR bits;

SSI

SSM
RXONLY
DFF
CRCNEXT
CRCEN
BIDIOE
BIDIMODE

{
RXDMAEN

TXDMAEN
SSOE

FRF
ERRIE
RXNEIE
TXEIE

{
RXNE

TXE
CHSIDE
UDR
CRCERR
MODF
OVR

BSY

FRE

DFF
CRCNEXT
CRCEN
BIDIOE
BIDIMODE

~. ~. ~.

~.

~. ~. ~.

R R N N e e e e
o

()}

~e

~. ~. ~.

~.

~. ~.

~.

1
1
1
1
1;
1
1
1
2

1SN

~.

~. ~. ~. ~. ~. ~.

~.

~. ~. ~. ~. ~. ~.

L R I T e T o S S S S S S S S S S SRS SRS S S T
o

(o))

~.

{
uint32 t DR : 16;
uint32 t 3 16g
} SPI DR bits;

{

SPI CR1 bits CRI1;

SPI_CR2 bits CR2;

SPI SR bits SR;

SPI DR bits DR;

uint32 t CRCPR;

uint32_ t RXCRCR;

uint32 t TXCRCR;

uint32 t I2SCEGR;

uint32 t I2SPR;

} SPI TypeDef;

SPI TypeDef *

spilInit (uint32 t clkdivide, uint32 t cpol, uint32 t ncpha);

uint8 t spiSendReceive (uint8 t send);

uintl6é t spiSendReceivel6 (uintl6 t send);

#endif

STM32F401RE_SPl.c

"STM32F401RE SPI.h"
"STM32F401RE RCC.h"
"STM32F401RE GPIO.h"

spiInit (uint32 t br, uint32 t cpol, uint32 t cpha) {

—->AHB1ENR.GPIOAEN
->AHB1ENR.GPIOBEN

->APB2ENR |= (1 << 12);

->0SPEEDR |= (0bll << 2*5);

->CR1.BR =
->CR1.CPOL

.CPHA = cpha;
.LSBFIRST = 0;

uint8 t spiSendReceive (uint8 t send) {
digitalWrite (; 9,)¢
=>CR1L.SPE = ¢

while (! (->SR.TXE)) ;
->DR.DR = send;

while (! (->SR.RXNE)) ;

uint8 t rec = ->DR.DR;
->CR1.SPE = 0;

digitalWrite (0) ¢

return rec;

uintl6é t spiSendReceivel6 (uintl6 t send)
digitalWrite (; B, 0)¢
->CR1.SPE = 1;
->DR.DR = send;

while (! (->SR.RXNE)) ;
uintl6é t rec = ->DR.DR;

->CR1.SPE = 0;
digitalWrite (

{

return rec;
}

STM32F401RE_SYSCFG.h

#include <stdint.h>

{
uint32 t MEMRMP
uint32 t PMC
uint32 t EXTICR1
uint32 t EXTICR2
uint32 t EXTICR3
uint32 t EXTICR4
uint32 t CMPCR

} SYSCFG TypeDef;

#define SYSCFG TypeDef *

configureFlash () ;

STM32F401RE_TIM2_5.h

#include <stdint.h>

#define

{
uint32 t

~.

uint32 t
uint32 t
uint32_t

~e ~.

~.

uint32 t

~.

uint32 t
uint32 t
uint32_t

~.

~.

NN RN R R e e e
<o

N

uint32 t
} CR1 bits;

{
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t

uint32 t

uint32 t

uint32 t

uint32 t
} SMCR bits;

{
uint32 t CC1S
uint32 t OC1FE
uint32 t OC1PE
uint32 t OCIM
uint32 t OCICE
uint32 t CC2S
uint32 t OC2FE
uint32 t OCZ2PE
uint32 t OC2M
uint32 t OC2CE
uint32 t

} CCMR1 bits;

{
uint32 t

~.

uint32 t

~.

uint32 t
uint32 t
uint32_t

~.

~.

uint32 t

~.

uint32 t
uint32 t
} EGR bits;

~.

NS I N
<c

@)}
~.

{
uint32 t UIF
uint32 t CC1IF
uint32 t CC2IF
uint32 t CC3IF
uint32 t CCAIF
uint32 t

uint32 t

uint32 t
uint32 t CCIOF
uint32 t CC20F
uint32 t CC30F
uint32 t CC40F
uint32 t
} SR bits;

CR1 bits

uint32 t

SMCR_bits

uint32 t

SR bits SR;

EGR bits EGR;

CCMR1 bits CCMR1;

uint32 t CCMR2;

uint32_t CCER;

uint32 t CNT;

uint32 t PSC;

uint32 t ARR;

uint32 t reservedl;
uint32 t CCR1;

uint32 t CCR2;

uint32 t CCR3;

uint32 t CCR4;

uint32 t reserved?2;

uint32 t DCR;

uint32_t DMAR;

uint32_t OR;

} TIM TypeDef;

#define TIM TypeDef
#define TIM TypeDef
#define TIM TypeDef
#define TIM TypeDef

configureTimer (TIM TypeDef* TIM);
configureShortARRTimer (TIM TypeDef* TIM);
configureLongARRTimer (TIM TypeDef* TIM) ;
setPWMTimer (TIM TypeDef* TIM, freq);
configureDurationTimer (TIM TypeDef* TIM);
configureMotorTimer (TIM TypeDef* TIM);
changePWM (TIM TypeDef* TIM, frequency) ;
changeMotorPWM (TIM TypeDef* TIM, frequency) ;
setTimerFromTime (TIM TypeDef* TIM, time) ;

#endif

STM32F401RE_TIM2_5.c

"STM32F401RE _TIM2 5.h"
"STM32F401RE_RCC.h"
<stdio.h>

<math.h>

#define

configureTimer (TIM TypeDef* TIM) {

TIM->SMCR.SMS = 0b000;
TIM->CR1.CEN = 1;
TIM->CCMR1.CC1S 0b00;
TIM->CCMR1.0C1IM = 0b110;
TIM->CCMR1.0C1PE = 1;
TIM->CR1.ARPE = 1;
TIM->CR1.DIR = O;

configureDurationTimer (TIM TypeDef* TIM) {
->APB1ENR |= 0bl111;

->CFGR.MCO1 = 3;
TIM->CCR1 = 0x006ACFCO;
TIM->ARR = 0x00D59F80;

TIM->CCMR1.OC1PE = 1;
TIM->CR1.ARPE = 1;
TIM->CCMR1.0CIM = 6;
TIM->CCER |= 1;
TIM->CR1.URS = 1;

TIM->DIER |= (1 << 1)

TIM->EGR.UG = 1;
TIM->CR1.CEN = 1;
TIM->EGR.UG = 1;

configureMotorTimer (TIM TypeDef* TIM) {
->APB1ENR |= 0bl111;

->CFGR.MCO1
TIM->CCR1 = 2;
TIM->ARR = 3;

TIM->CCMR1.0C1PE
TIM->CR1.ARPE =
TIM->CCMR1.0C1M
TIM->CCER |= 1;
TIM->EGR.UG = 1;
TIM->CR1.CEN
TIM->EGR.UG
TIM->PSC =

setTimerFromTime (TIM TypeDef* TIM,
slowTimerHz = () 1/ ((
1000) ;
setPWMTimer (TIM, slowTimerHz) ;

changePWM (TIM TypeDef* TIM, frequency) {

if (frequency == 0) {
TIM->ARR = (
TIM->CCR1 =
} else {
TIM->ARR = () (SystemCoreClock/frequency) ;
TIM->CCR1 =) (SystemCoreClock/ (2*frequency)) ;

changeMotorPWM (TIM TypeDef* TIM, frequency) {
if (frequency == 0) {
TIM->ARR = () (2);
TIM->CCR1 =) (3);
} else {
TIM->ARR =) (SystemCoreClock/1282/frequency) ;
TIM->CCR1 =) (SystemCoreClock/1282/ (2*frequency)) ;

configureLongARRTimer (TIM TypeDef* TIM) {

configureTimer (TIM) ;
TIM->PSC = 0;

setPWMTimer (TIM TypeDef* TIM,

clockFreq =) (84 * pow (10, 6))/(TIM->PSC + 1)

valueToCountTo = () (clockFreq)) / (

TIM->ARR = valueToCountTo;

TIM->CCR1 = valueToCountTo/2;

TIM->EGR.UG = 1;

STM32F401RE_TIM10_11.h

#include <stdint.h>

0x40014400UL
0x40014800UL

{
uint32 t
uint32 t

~e

~.

uint32 t

~.

uint32 t
uint32 t
uint32 t

~.

~.

uint32 t

~.

NN R W R e e
~

N
~.

uint32 t

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t

{
uint32 t
uint32 t
uint32 t

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

{

CR1 CR1;

uint32 t reservedO;
uint32 t SMCR;

uint32 t DIER;

SIR SR;

EGR;

CCMR1 CCMR1;

uint32 t reserved00;

uint32 t CCER;

uint32 t CNT;

uint32 t PSCe

uint32 t ARR;

uint32 t reservedl;

uint32 t CCR1;
uint32 t reserved?2;
uint32 t reserved3;
uint32 t reserved4;
uint32 t reserved5;
uint32 t reservedb6;
uint32 t

} TIM1011l TypeDef;

#define TIM1011l TypeDef *

#define TIM101l1l TypeDef *
configureTimerl011 (TIM1011 TypeDef* TIM);

setTimerFromFreglO1ll (TIM1011 TypeDef* TIM,

#endif

STM32F401RE_TIM10_11.c

#include "STM32F401RE TIM1O 11.h"
#include <stdio.h>

#include <math.h>

configureTimerl011 (TIM1011l TypeDef* TIM)

TIM->CCMR1.CC1S = 0b0O0O;

TIM->CCMR1.0C1IM = 0b1l10;

TIM->CCMR1.0OC1PE =

TIM->CR1.ARPE = 1;

setTimerFromFreql0ll (TIM1011 TypeDef* TIM,

clockFreq = () (84 * pow (10, 6))/(TIM->PSC + 1) ;

valueToCountTo =) (clockFreq)) / (

TIM->ARR = valueToCountTo;

TIM->CCR1 = valueToCountTo/2;

TIM->EGR.UG = 1;

TIM->CR1.CEN = 1;

Appendix B: Verilog code

/*
System Verilog code for MC You

Takes input from a 4x3 matric keypad and two pushbutton switches
Interprets them as user commands, records and saves timing information,
and sends it over an SPI link

Author: Kariessa Schultz
Email: kschultz@g.hmc.edu
Created 12/8/2021

*/

[
Pin assignments
PIN_H®6: clk, 12MHz clock
PIN_H4: sck, for SPI
PIN_H1: MISO/sdo, for SPI
PIN_J1: MOSI/sdi, for SPI
PIN_J13: CS, for SPI
PIN_H5: ready, signals MCU when there is data to be read from the FPGA
PIN_K10: record_|, input from left record pushbutton
PIN_E3: record_r, input from right record pushbutton
PIN_F1: row[0], controls Oth row of the keypad
PIN_E4: row[1], controls 1st row of the keypad
PIN_H8: row[2], controls 2nd row of the keypad
PIN_H13: row[3], controls the 3rd row of the keypad
PIN_E1: col[0], Oth column of the keypad
PIN_C2: col[1], 1st column of the keypad
PIN_C1: col[2], 2nd column of the keypad
*/

/*
mcyou
Top level module with SPI interface and input processor core
Author: Kariessa Schultz
Email: kschultiz@g.hmc.edu
Created 12/4/2021
*/

module mcyou(

input logic clk,
input logic sck, sdi, cs,
input logic recordl, recordr,
input logic [2:0] col,
output logic [3:0] row,
output logic sdo,
output logic ready,
output logic [7:0] led
);
logic [3:0] clean_input;
logic [647: 0] memory = 0;
spi spi(sck, sdi, sdo, cs, memory);
processorCore core(clk, cs, row, col, clean_input, ready, memory, recordl, recordr, led);
endmodule

/*
spi

SPI interface. Shifts out contents of memory module.
Assumes that the data on sdi will always take the form 0x8000...0

Author: Kariessa Schultz
Email: kschultz@g.hmc.edu
Created 12/6/2021

*/

module spi(

input logic sck, sdi,
output logic sdo,
input logic cs,

input [647:0] memory
);

logic sdodelayed = 0;
logic [647:0] memorycaptured = 0; // shift register

/1 shift the register one bit at a time on the positive edge of sck
always_ff @(posedge sck) begin
if (sdi == 1) memorycaptured = memory; /l initialize shift register with the input
else {memorycaptured} = {memorycaptured[646:0], sdi};
end

// sdo should change on the negative edge of sck
always_ff @(negedge sck) begin

sdodelayed = memorycaptured[646];
end

/Il when the MCU sends the first sdi signal, shift out msb before clock edge
// by definition, the msb is always 0
assign sdo = (sdi == 1) ? 0 : sdodelayed;

endmodule

/*
processorCore

High level module: wires together other modules for reading and storing user input

Author: Kariessa Schultz
Email: kschultz@g.hmc.edu
Created 12/8/2021

*/

module processorCore(
input logic clk, cs,
output logic [3:0] row,
input logic [2:0] col,
output logic [3:0] clean_key_input,
output logic ready,
output logic [647:0] memory,
input logic recordl, recordr,

logic [11:0] one_hot;

logic [3:0] raw_key_input;

logic en, newCommand, recordPressed, clean_record r_input, clean_record_|_input;
logic saveBeat, saveTime, saveCommand, clearCommand, recordCommand;

logic [31:0] stopwatch;

logic [3:0] regPointer;

assign recordPressed = clean_record _r_input | clean_record_|_input;

/Il read and debounce user input and save it in a register for later processing

keypadScanner scanner(clk, col, row, one_hot);

switchDebouncer keypadBouncer (clk, raw_key_input, en, newCommand, recordCommand);
recordDebouncer recordBouncerr (clk, recordr, clean_record_r_input);

recordDebouncer recordBouncerl (clk, recordl, clean_record_|_input);

// translate input into a four bit internal representation
decoder decoder(one_hot, raw_key_input);

commandRegister commandr(clk, en, raw_key_input, clean_key_input);

commander com(
clk,
newCommand,
recordCommand,
cs,
recordPressed,
ready,
saveBeat,
saveTime,
saveCommand,
clearCommand,
stopwatch,
regPointer

);

recordMemory mem(
clk,
saveBeat,
saveTime,
saveCommand,
clearCommand,
clean_key_input,
clean_record_|_input,
clean_record_r_input,
stopwatch,
regPointer,
memory

);

endmodule

/*
keypadScanner

This module reads the input from the 4x3 matrix keypad by sending voltage
to each row in turn, and recording the result as a one-hot encoding.

The one-hot encoding is twelve bits; each three bit segment represents the
result of sending the voltage to a different row.

Adapted from code written by Kariessa Schultz for a 4x4 matrix keypad
in lab 4 (9/26/2021)

Author: Kariessa Schultz
Email: kschultz@g.hmc.edu
Created 11/28/2021

*/

module keypadScanner(
input logic clk,

input logic [2:0] col,

output logic [3:0] row,
output logic [11:0] one_hot
);

logic [7:0] clk_counter = 8'h00;
always_ff@(posedge clk) begin
clk_counter = clk_counter > 8'hF0 ? 8'h00 : clk_counter + 1;
if ((clk_counter >=0)
&& (clk_counter < 8'h3C)) begin / row O (keys 1, 2, 3)
row = 4'b0001;
one_hot[11:9] = col;
end else if ((clk_counter >= 8'h3C)
&& (clk_counter < 8'h7A)) begin // row 1 (keys 4, 5, 6)
row = 4'b0010;
one_hot[8:6] = col;
end else if ((clk_counter >= 8'h7A)
&& (clk_counter < 8'hB4)) begin // row 2 (keys 7, 8, 9)

row = 4'b0100;
one_hot[5:3] = col;
end else begin /I row 3 (keys *, 0, #)
row = 4'b1000;
one_hot[2:0] = col;
end
end
endmodule
[
decoder

This module decodes clean user input into the commands to be sent to the FPGA

It assumes that user input is a one-hot encoding, so if multiple keys are pressed,
it will only register the 'first' one as the input

It is not responsible for handling the recording buttons, but the encoded commands from
the beat keys can be sent to the MCU as they are, and will be interpreted as

commands to play the correct beats

Author: Kariessa Schultz
Email: kschultz@g.hmc.edu
Created 12/7/2021

*/

module decoder(
input logic [11:0] one_hot,

);

output logic [3:0] command

always_comb

casez(one_hot)

12'b000000017?7?7?7?: command = 4'hA; // key 8: play sequence 2 on repeat
12'p0000000017?7?7?: command = 4'h9; // key 7: play sequence 1 on repeat
12'p00000000017?7?: command = 4'h0; // key #: no meaning assigned...
12'b000000000017?: command = 4'hB; // key 0: go back to marked spot in motor song
12'p000000000001: command = 4'hC; // key *: mark spot in motor song
12'b000000000000: command = 4'h0; // no meaning assigned...

default : command = 4'h0; // no meaning assigned...

endcase

endmodule

/*

switchDebouncer

This module deals with switch bounce for the keypad input.

It waits between 10 and 20 ms after first detecting a change in input to

do anything about it. The value is between 10 and 20 ms, because it waits
for a clock counter to equal zero, and then for it to equal its max value,
which takes at least 10 ms and up to 20 ms.

After waiting between 10 and 20 ms, if the change in input persists,
then the module saves the input in a register for other modules to handle

It then asserts newCommand to tell the commander it saw new input,
and asserts recordCommand if the key that was pressed was '1', '2', or '3’

Once the user is no longer pressing a key, it resets in preparation
to handle the next input

Author: Kariessa Schultz
Email: kschultz@g.hmc.edu
Created 12/7/2021

*/

module switchDebouncer(

input logic clk,
input logic [3:0] raw_input,
output logic en, newCommand, recordCommand

typedef enum logic [2:0] {S0O, S1, S2, S3, S4, S5, S6, S7} statetype;

statetype state = SO;
statetype nextState = SO;
logic [16:0] clk_counter = 0;

always_ff@(posedge clk) begin

state <= nextState;

clk_counter <= clk_counter > 17'b11101010011000000 ? O : clk_counter + 1;
end

always_comb
case(state)
SO0: if (raw_input != 0) nextState = S1; /I we saw something nonzero
else nextState = SO;
S1: if (clk_counter == 8'h00) nextState = S2; // wait for the counter edge
else nextState = S1;
S2: if (clk_counter > 17'b11101010011000000)
if (raw_input != 0) nextState = S3; // definitely got some input

else nextState = SO; /I false alarm, no input

else nextState = S2; Il keep waiting

S3: nextState = S7; /I clobber register with new input
S7: nextState = S4; I/l signal commander

S4: if (raw_input == 0) nextState = S5; /l we saw something zero

else nextState = S4;

S5: if (clk_counter == 0) nextState = S6; /l wait for the counter edge
else nextState = S5;

S6: if (clk_counter > 17'b11101010011000000)

if (raw_input == 0) nextState = SO; // no input

else nextState = S4; /1 still have input
else nextState = S6; /I keep waiting
default: nextState = SO;

endcase

// output logic

assign en = (state == S3);

assign newCommand = (state == S7);

assign recordCommand = (state == S7) & ((raw_input == 1) | (raw_input == 2) | (raw_input ==
3));

endmodule

/*
recordDebouncer

This module deals with switch bounce for the record button inputs.

Based on observation from the oscilloscope, these buttons are not
as prone to experiencing switch bounce. Therefore, we can switch states
more quickly.

This module waits after detecting a change in input to do anything about
it. After waiting, if the change in input persists, then the module
assumes that the change in input is real, and heads to a different

state to wait for the next change.

Because the system is only interested in whether or not the record button
is currently pressed, this module does not control any registers.

Adapter from similar code written by Santiago Rodriguez for a 4x4 matrix
keypad in lab 4 (9/26/2021)

Author: Kariessa Schultz & Santiago Rodriguez
Email: kschultiz@g.hmc.edu & sdrodriguez@g.hmc.edu
Created 12/6/2021

*/

module recordDebouncer(

input logic clk,

input logic record_raw_input,
output logic record_clean_input

);

typedef enum logic [2:0] {SO, S1, S2, S3, S4, S5} statetype;

statetype state = SO;
statetype nextState = S0;
logic [4:0] clk_counter = 0;

always_ff@(posedge clk) begin
if (clk_counter > 5'b11100) begin
clk_counter <= 0;
state <= nextState;
end else clk_counter <= clk_counter + 1;
end

always_comb

case(state)

S0: nextState = record_raw_input ? S1 : SO; // wait until we see something nonzero

S1: nextState = S2; [/l wait for counter edge

S2: nextState = record_raw_input ? S3 : SO; /I confirm we saw something
nonzero

S3: nextState = record_raw_input ? S3 : S4; // wait until we see something zero

S4: nextState = S5; /[wait for counter edge

S5: nextState = record_raw_input ? S3 : SO; /I confirm we saw something zero

default: nextState = SO;

endcase

// output logic

/I assume we have input once we pass the debouncing test,

// then keep assuming we have input until proven otherwise

I/ this prevents momentary errors from messing with the commander

assign record_clean_input = ((state == S3) | (state == S4) | (state == S5));
endmodule

/*
commander

This module detects when there is a new command, processes it, and asserts
the ready signal when there is something new for the MCU to read

To record beats, the module stays in a recording state until the next button
is pressed, incrementing a stopwatch counter.

To save user input when recording, this module increments a pointer after
each beat is pressed. The pointer's value is used by the recordMemory
module to save user input in the appropriate registers. We need 16 total

register pointer values, so we can use a four bit counter and let it overflow.

For any recording states where the commander might stay there a long time,
there is a check to make sure that a recording button is still pressed. This
ensures that the stopwatch times are accurate

cs is the chip select signal, which tells us when the command has been shifted
out and we can stop asserting ready.

Author: Kariessa Schultz
Email: kschultz@g.hmc.edu
Created 12/7/2021

*/

module commander(

input logic clk, newCommand, recordCommand, cs, recordPressed,
output logic ready, saveBeat, saveTime, saveCommand, clearCommand,
output logic [31:0] stopwatch,

output logic [3:0] regPointer

);
typedef enum logic [4:0] {SO, S1, S2, S3, S33, S4, S5, S6, S7, S8, S9, S10, S11, S12}
statetype;

statetype state = SO;
statetype nextState = S0;

/Il go to the next state and, if needed, update stopwatch and register pointer
always_ff@(posedge clk) begin
state <= nextState;
if (state == S5)
stopwatch <= 0;
else if (state == S6)
stopwatch <= stopwatch + 1;
if (state == S2)
regPointer <= 0;
else if ((state == S12) | (state == S9) | (state == S10))
regPointer <= regPointer + 1;
end

always_comb
case(state)
/I states for handling keypad user commands
SO0: if (recordPressed) nextState = S33;
else nextState = newCommand ? S11 : SO;

S11: nextState = S1; I/l save command in memory
S1: nextState = cs ? S2 : S1; // wait for chip select to be asserted
S2: nextState = cs ? S2 : SO; // wait for chip select to be deasserted

/I states for handling recording
S33: nextState = S3; I/l save record command

S3: if (recordPressed) nextState = recordCommand ? S4 : S3;
else nextState = SO;

S4: nextState = S5; /| save beat
S5: nextState = S6; // initialize stopwatch
to0
S6: if (recordPressed) [/l count time until next button pressed
nextState = recordCommand ? S7 : S6;
else nextState = S8; // done recording
S7: nextState = S12; /I save stopwatch value
S12: nextState = S4; /[increment register pointer
S8: nextState = S9; /] save current time
S9: nextState = (regPointer == 15) ? S1 : S10;
I/l recording state to clear the rest of the registers, if necessary
S10: nextState = (regPointer == 15) ? S1: S10;
default: nextState = SO;
endcase

// output logic
assign ready = (state == S1);
assign saveBeat = ((state == S4) | (state == S10));
assign saveTime = ((state == S7) | (state == S8) | (state == S10));
assign saveCommand = ((state == S33) | (state == S11));
assign clearCommand = (state == S10);
endmodule

/*

commandRegister

A 4 bit enabled register, for storing keypad input

Author: Kariessa Schultz
Email: kschultiz@g.hmc.edu
Created 12/4/2021

*/

module commandRegister(

input logic clk, en,
input logic [3:0] d,
output logic [3:0] q
);

always_ff@(posedge clk) begin

if (en) q <= d;
end
endmodule
/*

commandRegister
A 32 bit enabled register, for storing stopwatch values

Author: Kariessa Schultz
Email: kschultiz@g.hmc.edu
Created 12/6/2021

*/

module stopwatchRegister(
input logic clk, en,

input logic [31:0] d,

output logic [31:0] q

);

always_ff@(posedge clk) begin
if (en) q <=d;
end
endmodule

/*
recordMemory

This module is 648 bits of registers.

The first eight bits contains the command to be sent to the FPGA, which
may not be the same as the four bit internal representation of which key
on the keypad has been pressed.

The next 640 bits are grouped into enabled register pairs. Each pair consists

of a commandRegister and a stopwatchRegister. The command register saves
{4'b0000, beat}, where beat is four bits representing which beat has been pressed.
If the register does not hold a value, then beat is set to OxF. This allows us to

record beat sequences of any length, up to the maximum of 16 beats. The
stopwatch register is four bytes, and saves the time to rest after playing that
beat, measured in FPGA clock cycles (12 MHz)

The register pairs are enabled and disabled based on the value of regPointer,
such that only one register pair is enabled at a time.

Author: Kariessa Schultz
Email: kschultz@g.hmc.edu
Created 12/6/2021

*/

module recordMemory(
input logic clk, saveBeat, saveTime, saveCommand, clearCommand,
input logic [3:0] command,
input logic record_|_input, record_r_input,
input logic [31:0] stopwatch,
input logic [3:0] regPointer,
output logic [647:0] memory

logic [15:0] enBeat = 0;
logic [15:0] enTime = 0;
logic [3:0] commandToSave;

assign commandToSave = clearCommand ? 4'hF : command;

I/l write the command to the first register if the record button is
/I not pressed. Otherwise, use the command that means "record left"
// or "record right" to the MCU
always_ff @(posedge clk) begin
if (saveCommand)
if (record_r_input) memory[647:640] <= 8'h05;
else begin
if (record_|_input) memory[647:640] <= 8'h06;
else memory[647:640] <= {4'b0000, command};
end
end

assign enBeat = saveBeat ? (16'h0001 << regPointer) : 0;
assign enTime = saveTime ? (16'h0001 << regPointer) : 0;

oneBeatTime obt0(clk, enBeat[0], enTime[0], commandToSave, stopwatch, memory[635:632],
memory[631:600]);

oneBeatTime obt1(clk, enBeat[1], enTime[1], commandToSave, stopwatch, memory[595:592],
memory[591: 5601]);

oneBeatTime obt2(clk, enBeat[2], enTime[2], commandToSave, stopwatch, memory[555:552],
memory[551: 520]);

oneBeatTime obt3(clk, enBeat[3], enTime[3], commandToSave, stopwatch, memory[515:512],
memory[511: 480));

oneBeatTime obt4(clk, enBeat[4], enTime[4], commandToSave, stopwatch, memory[475:472],
memory[471: 440]);

oneBeatTime obt5(clk, enBeat[5], enTime[5], commandToSave, stopwatch, memory[435:432],
memory[431: 400]);

oneBeatTime obt6(clk, enBeat[6], enTime[6], commandToSave, stopwatch, memory[395:392],
memory[391: 360]);

oneBeatTime obt7(clk, enBeat[7], enTime[7], commandToSave, stopwatch, memory[355:352],
memory[351: 320]);

oneBeatTime obt8(clk, enBeat[8], enTime[8], commandToSave, stopwatch, memory[315:312],
memory[311: 280]);

oneBeatTime obt9(clk, enBeat[9], enTime[9], commandToSave, stopwatch, memory[275:272],
memory[271: 240]);

oneBeatTime obt10(clk, enBeat[10], enTime[10], commandToSave, stopwatch,
memory[235:232], memory[231: 200]);

oneBeatTime obt11(clk, enBeat[11], enTime[11], commandToSave, stopwatch,
memory[195:192], memory[191: 160]);

oneBeatTime obt12(clk, enBeat[12], enTime[12], commandToSave, stopwatch,
memory[155:152], memory[151: 120]);

oneBeatTime obt13(clk, enBeat[13], enTime[13], commandToSave, stopwatch,
memory[115:112], memory[111: 80]);

oneBeatTime obt14(clk, enBeat[14], enTime[14], commandToSave, stopwatch, memory[75:72],
memory[71: 40]);

oneBeatTime obt15(clk, enBeat[15], enTime[15], commandToSave, stopwatch, memory[35:32],
memory[31: 0]);

endmodule

/*
oneBeatTime

This module is an enabled register pair saving a single beat and its
associated time value.

Author: Kariessa Schultz
Email: kschultz@g.hmc.edu
Created 12/6/2021

*/

module oneBeatTime(
input logic clk, enBeat, enTime,
input logic [3:0] command_in,
input logic [31:0] stopwatch_in,
output logic [3:0] command_out,
output logic [31:0] time_out
);
commandRegister com(clk, enBeat, command_in, command_out);
stopwatchRegister tim(clk, enTime, stopwatch_in, time_out);
endmodule

Appendix C: Python code

For convenience, we wrote a Python script which converts three inputted .wav files into a C
header file, with audio data in the correct format for our program. This makes it easy to generate
arrays of audio data for our speaker to play. See below.

wav_converter.py

script for reading a wav file and printing it to a text file as an array of integers
and constants, in a format consistent with C syntax

import argparse
import sys
import wave

FILE1 ="./wav_files_for_testing/taps.wav"
FILE2 ="./wav_files_for_testing/sine.wav"
FILE3 ="./wav_files_for_testing/woop.wav"
OUTPUT_FILE = "audio_data.h"

def print_to_file(audio_file, output_fp, file_number):
fp1 = wave.open(audio_file, 'rb")
n_frames = fp1.getnframes()
waves = fp1.readframes(n_frames) # bytes object
sampwidth = fp1.getsampwidth()
framerate = fp1.getframerate()
fp1.close()

output_fp.write("\n")
output_fp.write(f"int sampwidth{file_number} = {sampwidth};\n")
output_fp.write(f"int framerate{file_number} = {framerate};\n")

if sampwidth == 1:

output_fp.write(f"'uint8_t notes{file_number}[] =")

output_fp.write("{")

else:

print("Wave file must have a bit depth of 8 (1 byte). Exiting without writing audio data.")
return

for i in range(0, len(waves) - sampwidth, sampwidth):
output_fp.write(f"{int.from_bytes(waves[i:i+sampwidth], sys.byteorder, signed=False)},")

output_fp.write(f"{int.from_bytes(waves[-sampwidth:], sys.byteorder, signed=False)}")
output_fp.write("};\n")

output_fp.write("\n")

def main():
with open(OUTPUT_FILE, 'w') as fp:
fp.write("// C file generated by Python script to hold audio data\n\n")
fp.write("#include <stdint.h>\n")
fp.write("#ifndef AUDIO_DATA\n")
fp.write("#define AUDIO_DATA\n")
print_to_file(FILE1, fp, 1)
print_to_file(FILEZ2, fp, 2)
print_to_file(FILE3, fp, 3)

fp.write("\n")
fp.write("#endif\n")

if _name__ =="_main__"
main()

Appendix D: Audio data

Here is the stepper song audio data. The speaker audio data is very long, so we have not
included it here. We have included the Python script that we used to generate the header file
above, so that way you may make your own arrays of audio data for the speaker if you wish.

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

.2
.2
.6
.6
.7
2 7
.6
.6
.6
.6
52y
2
.2
.2
o7
7
2 7
2 7
o7
7
> 7
o 1

~

~ ~

~

~ ~ ~

o o0 J J o oo N DN
~

~

~ ~

~

~ ~

~

.2
-2
.6
-®
o 7
7
> 7
2 7

~

~

~

~

~

~

~

.2
2
.6
=@
o 1
5 7
.7
> 7

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

-2
.2
&
.6
7
> 7
-6
.6
.6
.6
2
-2
.2
.2
o 7
7
> 7
2 7
o 7
7
> 7
2 7

~

~ ~

~

~ ~ ~

~ J J J o o DN DN
~

~

~ ~ ~ ~

~

~ ~ ~

~

2
.6
.6
52
-2
-2
.2
2
2
.2
.2

~

~

~

~

~

~

~

~

~

.6
&
o7
7
-2
.2
5
.7
> 7
o 1

~

~

~

~

~

~

~

2
2
.6
- @
5
.7
L7
.7

~

~

~

~

~

~

~

.2
-2
.6
-®
o 7
7
> 7
2 7

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

6
6
7
7
2
2
7
7
7
7
7y
.
.
7
7
7
7
7
7
7
7
7

— 0~

~

~

~

~

~

~

~

~

~

0
0
0
0
6
=@
35
.8
.2
.2
.2

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

.2
.2
2
.2
.2
plt
ik
.1
.1
plt
ik
.1
.1
5 7
.7
L7
-1y
-2
.2
.2
.2
.6
.6
.6
.6
.6
.6
.6
.6
-2
.2
.2
2

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

L7
.7
7
.7
.7
52
-2
.2
.2
2
2
.2
2
.6
6
6
6
6
6
6
.6
7
.7
.7
5

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

.0
.0
.0
.0
.6
.6
.8
.8
-2
-2
.2
2
2
.2
.2
2
.1
.1
1

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

1
1
1
1
1
7
7
7
7
2
2
2
2,
6
6
6
6
6
6
6

.6

.2

.2

.2

.2

~

~ ~ ~ ~

~

~ ~ ~ ~

N DD D 9 39 39 39 39 39 39 4
~

~

~

~

~

~

~

~

-2
.2
.2
.2
Ny
.2
.2
52

~

~

~

~

~

~

~

~

~

~

~

2
2
2
2
2
2,
2
2
7
7
7
7

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

.0
.0
.0
.0
.6
.6
.8
.8
-2
.2
.2
.2
2
-2
.2
52
ik
.1
.1
plt
ik
.1
.1
it
.7
L7
5

~

7
7
7
7
7
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
7
7
7
7
2
2
2
2
6
6
6
6
6
6
6
6
2
2
2

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

5
7
7
7
7

7

L7

.7

22

.2

.2

.2

-2

.2

.2

.2

.6
6,
6
6
6
6
6

.6

-2

.2

.2

2

2

.2

.2

2

.2

.2

.2

~

