Vending Machine

E155 Final Project Report
December, 10 2021

Ava Sherry and Leila Wiberg

Abstract

They say millionaires have at least 6 streams of income. We decided to use this opportunity to
add another stream of income by creating a vending machine. Instead of buying one, we used
our knowledge of microprocessors to make a 6 item vending machine with an LCD driven by an
FPGA and motors driven by the MCU. The user simply needs to follow the instructions on the LCD
screen to get an item from the vending machine. The LCD displays “Select ltem” in the idle state
while the MCU checks for a button press. The user presses one of six buttons, positioned relative
to the corresponding motor, and the motor turns. As the item is dispensing, the LCD displays
“Dispensing...” and no other buttons can be pressed. In later iterations, we plan to incorporate an
RFID sensor to require payment for items, however we felt that Harvey Mudd students deserved
their items for free.

Introduction

Normal children want Barbie houses, toy cars, or iPads, but Ava is different. Ever since she was a
child, she dreamed of having a vending machine of her own. This project aims to achieve that
childhood dream of providing 24/7 snacks and other items to our friends. After an all nighter in
the Digital Lab, we realized the importance of having machines that can provide sustenance at all
hours of the day.

This vending machine uses a MAX1000 FPGA and a STM32F401RE MCU to drive an LCD display
and 6 motors, respectively. The display waits in the idle state where it displays “Select Item”,
directing the user to press one of 6 buttons corresponding to 6 spaces in the vending machine.
Each space has a spiral dispenser and is mounted on a 28BYJ-48 stepper motor. The motors are
driven by 4 GPIO pins on the microcontroller. The microcontroller waits for a button press, then
begins to turn the corresponding motor as well as send a signal to the FPGA that a button has
been pressed, prompting it to change the display to read “Dispensing...”. Once the motor stops
turning, the MCU sends a signal to the FPGA to return to the idle “Select Iltem” state, and then
begins looking for a button press again.

r SV Power Supply 1

Buthon Pressed
17 ‘ 16
LCD Display |+ FPGA mew P> Stopper Mators
Oone
l 1—?& Buitons

New Hardware

Stepper Motors

We selected stepper motors to turn the spiral dispensers. Stepper motors are best for this
application because they will be moving at a low speed but a high torque, they hold their position
when not in use, and they are relatively precise with their movements. We selected 6 28BYJ-48
motors--one for each spiral dispenser. These are unipolar motors, which makes them simple to
drive. The 28BYJ-48 motors require only 5V of power supplied from a stripped USB charger
which makes powering them safer and simpler than high power and high torque motors. Using
the 5V supply from the MCU would draw too much current (240mA, whereas the MCU can only
supply about 20mA), so the motors require an external power supply and a driver. We selected
the ULN2003 driver (28BYJ-48 -- 5V Stepper Motor Manual). The ULN2003 is a transistor array
with Darlington pairs to amplify the current and voltage to drive the motor. It can drive up to
500mA and it has a 2.7kOhm base resistor to directly interface with 5V devices (ULN2003
Datasheet).

LCD Character Display

For this project we used an LCD Character Display to give instructions to the user. In its idle state
the LCD displays “Select Item”. Once a button is pressed, the MCU sends a signal to the FPGA
which changes the text to “Dispensing”. The LCD will continue to display “Dispensing” until the
FPGA receives the “done” signal from the MCU. This “done” signal tells the FPGA to change the
text back to “Select ltem”.

The LCD screen has 16 pin outs, as shown in Figure 1.

;l: Symbol Level Description

1 VSS ov Ground.

2 VDD +5.0V Power supply for logic operating.

3 vo - Adjusting supply voltage for LCD driving.
A signal for selecting registers:

4 RS H/L 1: Data Register (for read and write)
0: Instruction Register (for write), Busy flag-Address Counter (for read).
R/W = “H”: Read mode.

5 rW HL R/W = “L”: Write mode.

6 E H/L An enable signal for writing or reading data.

7 DB0 H/L

8 DB1 H/L

9 DB2 H/L

10 DB3 H/L This is an 8-bit bi-directional data bus.

11 DB4 H/L

12 DB5 H/L

13 DB6 H/L

14 DB7 H/L

15 LED+ +5.0V Power supply for backlight.

16 LED- o The backlight ground.

Figure 1. LCD Character Display Pinouts

To write a character to the display you must first send a series of initialization commands then set
the register select to 1 (data register) and send an 8-bit encoding of the ASCII character you wish
to display. The letter encodings can be found in Appendix Al. The initialization commands are
shown in Table 1. Once you set the new register select, read/write, and data bit registers, you
must write the enable high then low to send the data to the sensor.

reg_select | read_write data_bits command
Initialization
0 0 0011xxxx function set
(only reads upper 4-bits)
0 0 00T1xxxx function set
(only reads upper 4-bits)
0 0 001Mxxxx function set
(only reads upper 4-bits)
0 0 001 DL N F xx function set
data length: 8-bit (DL =1), 4-bit (DL = O)
display line: 2-line (N = 1), 1-line (N = 0)
display font type: 5x10 (F =1), 5x8 (F = 0)
0 0 00001000 turn display off
0 0 00000001 clear display
0 0 0000011/D S entry mode
assign cursor moving direction and shift
Increments (I/D = 1), Decrements (I/D = 0)
Right Align (S =1, I/D = 0), Left Aligh (S =1, I/D =1)
0 0 00001DCB display on
set display (D), cursor (C), and blinking of cursor (B)
Write Character
1 0 XXXXXXXX ascii encoding of character
01000001 write “A”
Table 1. LCD Character Display Commands
RFID Sensor

The purpose of the RFID sensor was to act as a means to “purchase” the items in our vending
machine. The simplified block diagram of the RC522 RFID Sensor can be seen in Figure 2.
Contactless UART protocol used to communicate between the sensor and the RFID tags. We

used SPI protocol to communicate between th
sensor you must first initialize the SPI connecti

e MCU and the RFID sensor. To use the RFID
on and the RC522 sensor and turn the antenna on.

Then you can begin sending commands to the CommandReg. Table 2 shows the different

commands for the RC522

. »| REGISTER BANK
|| ANALOG CONTACTLESS !
ANTENNA -
|| INTERFACE UART BS'FFF%R SERIAL UART
p— e SPI <+1>HOST
12C-BUS

0012aj627

Figure 2. Simplified Block Diagram of the MIFARE RC522 RFID Sensor

Command Command |Action

code
Idle 0000 no action, cancels current command execution
Mem 0001 stores 25 bytes into the internal buffer
Generate RandomID |0010 generates a 10-byte random ID number
CalcCRC 0011 activates the CRC coprocessor or performs a self test
Transmit 0100 transmits data from the FIFO buffer
NoCmdChange 0111 no command change, can be used to modify the

CommandReg register bits without affecting the command,
for example, the PowerDown bit

Receive 1000 activates the receiver circuits

Transceive 1100 transmits data from FIFO buffer to antenna and automatically
activates the receiver after transmission

- 1101 reserved for future use

MFAuthent 1110 performs the MIFARE standard authentication as a reader

SoftReset 1111 resets the MFRC522

Table 2. RC522 Command Overview

To communicate with the RFID Tag (PICC) we used the Tranceive command. This command
transmits data stored in the FIFO buffer and receives data from the PICC which is then stored
back in the FIFO buffer. To read the UID of the PICC you must follow the state diagram shown in
Figure 3.

Power OFF

Reset

. A AC
nAC,
SELECT,
: lS[:LlE nSELECT,
' ate HLTA

Error

nAC, REQA, WUPA

SEL,'ECT' SELECT
nSELECT,
4

Error
ACTIVE
L State
Enter

ISO/IEC 14443-4

ISO/IEC 14443-4

HLTA DESELECT HLTA

nSELECT,
Error
ACTIVE*
State

Figure 3. PICC Type A State Diagram

When a PICC is presented to the sensor (PCD) the PCD must send the wakeup command (WUPA)
to put the PICC in the Ready state. The PCD must then send the select command to the PICC.
The select command returns the UID of the PICC. The PCD must then send the HALT command
(HLTA) to put the PICC in the Halt state. So that it can be read again. To send a command to the
PICC the PCD writes the data to be sent to the FIFO buffer then writes the Transcieve command
to the Command register.

Schematic

STM32E40 IRE

78BYT-48

™S

PAb
L
™
aip

28BYT-48

FAD

L1, | I I—

|

28BYT-48

QOO

buthyn_ prssed

dent.

STM32E40 1RE

Z9BYT-Y

(=]

4 1]

™5
Bl -

®

28BYT-40

N

PAS
FAb
w1
B
ap

| 28BYT-48

28BYT-48

Gro
+5v
+2.23V
Hiz
Ho
ag
Jie
Jz
iz
En
713
hpr
HY
kie
+5v
GND

Fea—Select

resd write

thable,

datn_bity [+]

dota. bite [1]

dafn— Liks [2]

Aabn bits (37

dein— bnfs L4

Asln —bbs [81

dapnbibr [T

Arkn—lalv [3]

Figure 4. Full Schematic for Vending Machine

- GNo
v 4+ 5V
v Contvac b

L
" wite
& Ehnlle

4 Date®it©
= Dahgﬂ"l
s DamBit2
s DatmBit2
= Dotmbit- 4
v DamBit-5
7 DatmBrt-b
r D'*’k\?ﬁ"}
= Backligihsv
= 5.,”;'1.(-5‘:1‘9

Yl (1977

Microcontroller Design

RFID Sensor

For the RFID sensor we ran into issues communicating with the PICC. We were able to write the .c
and .h files for the new sensor. The .c file contained the following functions; writeRegister(reg,
value), readRegister(reg), wakeUpTag(), selectTag(uid), haltTag(), and rc522Init(). We were able to
confirm that our writeRegister and readRegister functions were working correctly by scoping
them using the logic analyzer. Figure 5 shows that we were able to correctly write Ox7F to the
FIFODataReg and read that value back. This showed us that our SPI connection between the
MCU and the RC522 was working

B —_—

MISO[HEM[E]

-

B uosiHENE)

Rigg=sssws
NEE CEER

Figure 5. Logic Analyzer of PCD SPI Connection

We ran into issues with this sensor when we tried to communicate between the PCD and the
PICC. We tried to run the wake up command which put Ox52 in the FIFO buffer. When a card is
presented the PCD should receive data from the card (i.e the FIFODataReg should no longer read
0x52). We suspect there were issues in our initialization steps since we never got the FIFO buffer
to change when a card was present. Figure 6 shows the scope from the logic analyzer when we
ran the wakeUpTag command and presented a card to the reader. As you can see the
FIFODataReg continues to read Ox52.

+ [4

AT T B

100 1)1
1 o

0nRa OERR
Figure 6. Logic Analyzer of wakeUpTag function

Stepper Motors

The MCU drives 3 28BYJ-48 stepper motors with 4 pins for each motor. A second MCU was
needed to increase the number of available GPIO pins. The MCU was selected to control the
motors because designing the motor drivers would be simple.

The 28BYJ-48 motors have 5 pins, 4 of which each connect to a magnetic coil inside the motor,
and the 5th connects to an external 5V power supply. When a pin goes high, it causes current to
flow through the magnetic coil, creating a magnetic field which attracts the nearest teeth of the
cogged wheel (Stepper Motor Basics). This turns the gear and therefore the motor. The sequence
of pins determines the direction that the motor turns and the speed of the pulses determines the
speed of the motor. The gear ratio of the motor is 1/64, so it takes 512 wave mode cycles for a full
rotation (28BYJ-48 -- 5V Stepper Motor). We drove the motors in wave mode, where each pin
goes high sequentially, as shown in Figure 7. Wave mode is the simplest mode but it also
provides high torque. Due to the fact that the timing of these pulses is extremely important, |
directly used statements in the code to set the bits of the ODR register to write the pin high. This
solved an issue with timing when using the function DigitalWrite.

25.0MSais 0
RIGOL STOP H 500ms 3ioMps snmnrr o Enannaann D 3000000000 £@ ooov
Horizontal '] 0 JUUUL 49.7439 Hz Mode

R " = A 1
m! o % \ < Manual
5 20 :

S 5.1
BY-AY: = 6600V
MaX: = 1961 Hz

~ Select
.

Source

-
ioem——— i ——— G
[P

<« CH3

Rise<100.0us

Figure 7. Logic Analyser of Stepper Motor Signals

The MCU controls the motors, takes in signals from the buttons, and sends signals to the FPGA.
The MCU checks every 1ms if a button is pressed. If it detects a signal, it waits another 1ms and
checks again, which ensures that there are no false signals and the signal is debounced. Upon
detecting a button press, it determines the corresponding motor and begins driving the motor in
wave mode to turn it. The motors are rated at 100Hz, so we used a 2ms delay and slowed down
the clock to ensure the gear turns fully before the next pin goes high. When a button is pressed,
it also sends a 100ms pulse to the FPGA, which has a slower clock. The motors turn 612 rotations,
which we determined through mechanical testing to be an appropriate amount to dispense an
item. Once the motor has turned fully, it sends another 100ms pulse to the FPGA to signal that the
motor is done. The MCU then resets all of the pins and begins looking for another button press
input.

FPGA Design

The FPGA was used to drive the LCD Character Display. We used the FPGA for this sensor since
there were specific timing constraints that needed to be met. These timing constraints are easiest
to meet on the FPGA using a state machine.

To meet these timing constraints we generated a slow clock by dividing our 16MHz by 262144 to
create a 61 Hz clock. A diagram of how we created our slow clock is shown in Figure 8. In our
code, we set clk_divide to an 19-bit binary number. Since our clock runs at 61 Hz we have 16ms in
between each clock cycle. This meets the longest timing requirement which requires us to wait 15
ms after powering the device on to input data.

cle_ divioe lo 10 | > oo| o©lo ol O o

Cle_divide 2] - - -

Figure 8. Slow clock signal

At every positive slow clock edge the FPGA moves to the next state and the new values for
register select, read/write, and data_bits [7:0] are shifted into the registers. The state machine
can be seen in Figure 9.

'\ ———— INITALIZATION ———— -
vﬁi‘ﬂ/\ :/ﬂ N T N N Y
Liewm vet) G4 lno bk
iF (5= bnckoct) (= lnkxt) Q
/—\ m
& (buttor— prssed=1) & (done=)

WnkeS

“Dispentsing

—— —— WRITE TEXT —

db=datn_Lits

Figure 9. Finite State Machine for LCD Character Display

State O through 7 step through the initialization commands. In state 7, the FPGA writes “SELECT
ITEM” to the display and steps into S9. S9 is the idle state. The FPGA waits in this state until it
receives either a button pressed or done input signal. If the a button is pressed the
button_pressed signal will go HIGH and the FPGA will step to S8 where “Dispensing. . .” gets
written to the display. It then waits in S9 until it receives the “done” signal from the MCU
indicating that the motors have turned off and the item has been dispensed. Once the FPGA
receives the done signal it jumps to S7 to write “Select ltem” on the display before waiting for the
next button to be pressed.

One of the tricky parts of this sensor is setting the enable pin correctly so that it meets the timing
constraints. A high level overview of the process is as follows:

AwN o

Set register select, read/write, data bits and wait at least 40 ms to let them settle

Bring enable high and hold for at least 230ns

Bring enable low and leave data stable for at least 10 ns

Wait a minimum of 40ps (for character commands) or 1.64ms (for instruction commands)
before entering the next byte.

To do this | set the enable pin high for one fast clock cycle. This can be seen in the simulated
signals in Figure 10.

Figure 10. ModelSim signals for LCD FSM

With RFID
Here’s a general overview of how the RFID would be added to our system

The user would first press a button selecting their item.

The display would then show “Scan tag” prompting the user to scan their RFID tag

The RFID sensor would read the tag and check whether or not the UID of the tag was on
the list of acceptable ids.

If so, the MCU would write the “tag_accepted” signal high and send the signal to the
FPGA.

The FPGA would take the tag_accepted input and use that to determine what text to
display on the LCD

A block diagram of the FPGA can be seen in Figure 11.

}Z‘;i L pieed

key 41-'Cof|-°4
bp ke
w Selack i " _ 1 00 -
S Seleck-ikem” 1o Hxk — hd";""‘;
LS ' e G—) re” l:w
“dl.srf”g'lf |HJM. J— tihn

L Jarn FS
resed ‘
clecin

Figure 11. Block Diagram of FPGA

Mechanical Design

The vending machine is designed to be aesthetically pleasing and easy to use. The front of the
machine catches the user’s eye with a large window to view the items on the left and the LCD
and buttons on the right. The user simply follows the instructions on the machine to “SELECT
ITEM” by pressing a button, then the item begins dispensing and the LCD displays
“DISPENSING...”. The spiral dispensers turn and the item the user selects falls to the bottom of the
left side, where the user can reach into a small opening and pick it up.

Orlbogonal Vitws: Front View: o SO VW e BACL V 1EW!

—
5%% 26

3 Li12
Figure 12. Vending Machine Housing Drawing

Z‘{S“

FNTETY
L

)

24hn

245 ' I 3

Primarily made of particle board, the box and shelves that house the electronics and dispensers
is approximately 2'’x2’x2’. The 6 shelves inside are designed to dispense items up to 4"x6”. The
spiral dispensers are 12” long with 5-6 locations in each spiral dispenser for the operator to place
items. The dispensers are made of ¥4” copper wire and mounted to a cardboard disk with hot
glue. The center of the disk is glued to the motors so that the spiral turns as the motor turns. The
front of the vending machine is cardboard with holes cut out for the window, LCD display,
buttons, and slot to retrieve items.

SmAn

Figure 13. Vending Machine Setup

Results

Our final product is a working vending machine with 6 buttons, 5 motors, and an LCD display. The
user simply presses a button and the vending machine dispenses an item while the LCD displays,
“Dispensing...”, and once the motor stops turning the LCD returns to displaying “Select Item”. The
RFID sensor was not functional at checkoff time but with more time we hope to figure out how to
utilize the contactless UART connection to communicate the PICC and PCD and integrate it into
our system.

The LCD display proved to be especially tricky. We created and debugged an FSM. The FSM
forced us to think about the hardware implementation of our logic. This especially tripped us up
when we had to write a flip flop for the i variable which we used to iterate over the characters in
the string. This FSM gave us great practice at using ModelSim to debug our errors. Another tricky
part of this sensor was making sure all the timing constraints were met and that the data was
stable before writing the enable signal HIGH. This was done by utilizing a combination of a slow
and fast clock.

The RFID sensor gave us great practice with debugging an SPI connection using a logic analyzer.
Through this debugging process we were able to solidify our understanding of clock phase and
polarity. Overall we were able to successfully communicate between the RFID sensor and the
MCU. We eventually ran out of time and were unable to successfully communicate between the
PICC and the PCD. We believe this was due to missing steps in our initialization of the RC522.

We originally planned to use an enable for each motor and use the same 4 GPIO pins to power
the magnetic coils on each motor. This would use less GPIO pins and only require one MCU.
However, after testing with some transistors, we destroyed an MCU by accidentally drawing too

much current by trying to power all of the motors at once. Instead, we could use an H-bridge to
select between motors and reduce the number of pins required.

The 28BYJ-48 motors provide the exact amount of torque necessary to turn the spiral dispensers.
For the final demonstration, we decided to dispense paper so that the motors are not
overpowered and unable to turn due to the extra weight. To improve this, we might increase the
voltage of the motors or add a gear system to increase the torque applied to the spirals.

The mechanical design of the vending machine could use some improvements. The front of the
vending machine is cardboard, but a particle board front would be sturdier and more secure. This
could be attached with hinges and a latch that locks. Most of the motors and electronics are
mounted with tape, but we would like to use screws for a more permanent and reliable design.
The cardboard disk that connects the motor and spiral is hot glued together but this could be
improved with a plastic gear that doesn’t bend and a perfect slot for the motor dowel. The bottom
slot to get the item could have a board to block the user from reaching up to grab an item from
the machine.

References

Heymsfeld, Ralph. “Adding a Character LCD to an FPGA Project.” The Robot Diaries, 21 March
2019, http://robotics.hobbizine.com/fpgalcd.html.

LCM Module TC1602A-09T Datasheet. 4 6 2009. TC1602A-09T SpecV0O0 2009-06-04, Tinsharp
Industrial Co., Ltd., https://cdn-shop.adafruit.com/product-files/181/p181.pdf.

Stepper Motor Basics. 6, 1-6, Industrial Circuits,
https://www.geeetech.com/Documents/Stepper%20motor%20basic.pdf.

28BYJ-48 -- 5V Stepper Motor. 28BYJ 48 Stepper Motorx Motor Manual,
https://usermanual.wiki/Pdf/Stepper20Motor20Manual.1122402138/view.

ULN2003 Datasheet. December 1976. High Voltage High Current Darlington Transistor Arrays,

Texas Instruments, https://www.geeetech.com/Documents/ULN2003%20datasheet.pdf.

Bill of Materials

Stockroom

ltem Description Quantity Vendor Price
28BYJ-48 Motors and Motors and Transistor 6 Amazon $12.99
ULN2003 Drivers Array
Mifare RC522 RF IC Card RFID Sensor 6 Amazon $5.49
Sensor Module
NFC Smart Card tag Tags RFID Cards 10 Amazon $7.99
1k S50 IC 13.56MHz
LCD Screen LCD Screen 1 HMC Digital Lab -
8'x4’ Particle Board Box and Shelving 1 Lowes $25
Pushbutton Switches Buttons 6 Amazon $7.99
Va” Metal Dowels Shelf Support 4 HMC Stockroom -
Wood Glue To bond shelves and N/A HMC Machine Shop -
housing
1.2kOhm Resistors Pulldown Resistors for 6 HMC Digital Lab -
Buttons
Extra Large Cardboard Vending Machine front 1 HMC Recycling Bin -
Box and wire mount
Tape and Hot Glue For mounting electronics N/A HMC Makerspace -
and dispensers
2"x8” Breadboard 2 for motors, 1 for LCD 3 Pre-owned -
10’ Copper Wire, 1'4” Spiral Dispensers 1 Lowes $8.99
diameter
STM32F401RE Microcontroller 2 E155 Kit -
MAX1000 FPGA 1 E155 Kit -
Miles and Miles of Wire Wires N/A HMC Digital Lab and -

TOTAL

$68.45

Appendix A: LCD Character Display
A.1 Character Encodings

Higher
Lawer‘lblt ooooffooiojool11(0100f0101|0110|0L11 (101010111100 (11011110(1111
4hit
E IIE .Il E L[]} .. =...l EEEER l=:.E ::: l.l = =l..l
w1000 - a | wem |® ® |E &
P[RR e | e
w001 meeE R Ta® | Wt UWRE||ETE | F | | Rewed | attE RS
= = I...I ...I [=.. I. " EnE u L1 1]
x0010 o (it B R el PR e B
EEEEE 1111 | | 111 | | | | | =lll [L 1]
k011 e R e T e e
.: :. l.. ...= i l..l .E. ..E.. L] " = = l...l
w100 amma” ["R " H iow|["a H H "R | e
un I. =III = E E L]] L] L] . IIEII ..= L] 1]] I. .I
XXXXDlDll.. .IIIE E:::I ElllE .:::= EII.E == ... I.= IIIEI EI::. EII.E
wxxx1110 e Bl (R EE R R e
1| T} [} i a | .| ENEEE | BEEEN | =lll EEEER
S L ey || e ol || e | e e
maxx(1111 H B Elmam| "tk|EEE n n | El
=.. =:::= L 1]] ..l.. I..l .I I. I. l=..E ..E=. E E =.. ::.::
XXXX]_DDD .I = = I. .I = I.I I.= . I.=.I l. |] = I.I
.I ...I ' = = . =III = u L]
XXXXlDDl l.. ll.. | 11 E IEI :::. . ll. l= I.. E EI= =IIIE
wocx 011 S (R]|
II:II == I.. l. l= lll=l .E.E. E.... E...E :.. .=...
w1011 PR | B || "8 "R |E
.. :=l=: .] -== I=I AEEER
XXXXllDI:I := ...I T T1T 11 ..E.. 111 .E.:= ::I.. ll.= : l.= =.E.. E.=.E
xxxxllnl [— aEEER - E E = E =. ..: = : .= .= I=I aEEER
[T i u a | pumEn | A RN (1] n
..l .l =l..l ll:=l [.E.:= o= o .. . =l..l
w110 un " . Bom| w |["E | & iEa iom
|_HN A A A AREE 111 n n
u n _Iml |] || n EEEEE ='=
I. I. = = I...l I=III " EnE .I = = anm
XXXXllll .. : =III= ANEEE =III= .. .:I= II. ..:

Appendix B: Verilog Code

module lcd char display (
input logic clk in,
input logic reset,
input logic button pressed, done,
output logic [7:0] data bits,
output logic reg select, read write, enable

) ;

logic [18:0] clk divide;
always @ (posedge clk in)
if (reset)
begin
clk divide <=
enable <= 0;

end

if (clk divide[18])
begin
enable <= 1;
clk divide <= clk divide + 1;
end
else
begin
enable <= 0;
clk divide <= clk divide + 1;

end

lcd fsm fsm(clk divide[18], reset, button pressed, done, reg select, read write,

data bits);

lcd fsm(
input logic clk in,
input logic reset,
input logic button pressed, done,
output logic reg select, read write,
output logic [7:0] data bits
)i

logic [7:0] 1i;
logic [7:0] text[15:0];
logic [7:0] text 1[15:0] { "m","g","g","1", "
w,wr","c","g","",","g","s","
logic [7:0] text 2[15:0] = '"{" ", "
L, 'y, 'z, """, "N, "g", "p", """, "1, "p", "
logic [7:0] len text = H

logic [3:0] state, nextstate;

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

parameter

always ff @(posedge clk in or posedge reset)

if (reset) state <= S0;

else state <= nextstate;

always ff @ (posedge clk in)
if (state == S7 && i != len text) i <=
else if (state == S9 && i == len text)
else if (state == S8 && i != len text)

else 1 <= 0;

always comb

case (state)

begin
reg select <= 0;
read write <= 0;
data bits <=
nextstate <= S1;
end
begin
reg select <= 0;
read write <= 0;
data bits <=
nextstate <= S2;
end
begin
reg select <= 0;
read write <= 0;
data bits <=
nextstate <= S3;
end
begin
reg select <= 0;
read write <= 0;
data bits <=
nextstate <= S4;
end
begin
reg select <= 0;
read write <= 0;
data bits <=

nextstate <= S5;

reg select <= 0;

read write <= 0;

data bits <=

nextstate <= S6;

reg select <= 0;
read write <= 0;

data bits <=

nextstate <= S7;

if (i == len text)
begin
reg select <= 0;
read write <= 0;
data bits <=

nextstate <= S9;

begin
reg select <= 1;
read write <= 0;
data bits <= text 1[i];
nextstate <= S7;

end

if (i == len text)

begin

reg select <= 0;

read write <= 0;
data bits <=

nextstate <= S9;

else
begin
reg select <= 1;
read write <= 0;
data bits <= text 2[i];

nextstate <= S8;

(done == 1)
begin
reg select <= 0;
read write <= 0;
data bits <=
nextstate <= S7;
end
(button pressed
begin
reg select <= 0;

read write <= 0;

data bits <=

nextstate <= S8;

else
begin

reg selec

_ 0;
read write <= 0;
data bits <=
nextstate <= S9;
end
end
default:

nextstate <= S0;

endcase

endmodule

Appendix C: Microcontroller Code

C.1 Stepper Motors

The complete software include RCC.h, RCC.c, GPIO.h, GPIO.c, and main.c can be viewed at
https://github.com/Iwiberg/vending-machine. The files besides main.c are from previous labs
found on the class github.

Main.c

https://github.com/lwiberg/vending-machine

fdefine

#define

#define

initializeGPIO()

->CFGR.PPRE2 = 0b000;
->CFGR.HPRE = 0b1001;
->AHB1ENR.GPIOAEN = 1;
->AHB1ENR.GPIOBEN = 1;

x=1000;
while (x-- > 0)

__asm("nop") ;}

get button press() {

ms delay(2);

if (digitalRead ()>0) return 1;
if (digitalRead ()>0) return 2;
if (digitalRead ()>0) return 3;

return 0;

one step 1(){

->0DR &= (0x7<<6);
->0DR (0x1<<6) ;
ms_delay ()
->0DR (0xE<<6) ;
->0DR (0x1<<7) ;
ms_delay ()
->0DR (0xD<<6) ;
->0DR (0x1<<8) ;
ms_delay ()
->0DR (0xB<<6) ;
->0DR (0x1<<9) ;
ms_delay ()

one step 2 () {

->0DR &= (0x7<<3);
->0DR (0x1<<3) ;
ms_delay ()
->0ODR (0xE<<3) ;
->0DR (0x1<<4) ;

ms_delay ()
->0DR (0xD<<3) ;
->0DR (0x1<<5) ;

ms_delay ()i
->0DR (0xB<<3) ;
->0ODR (0x1<<6) ;

ms_delay () ;

one step 3(){

->0DR &= (0x7<<7);

->0DR
->0DR
ms_delay (
->0DR
—->0DR
->0ODR
ms_delay (
->0DR
—->0DR
->0DR
ms_delay (
->0DR
->0DR
->0DR
ms_delay (

dispense (

for (
if
if
if

(motor
(motor
(motor
}

digitalWrite (
ms_delay (100) ;

main (

(0x7<<5) ;
(0x1<<5) ;
) 7
(0xE<<LT) ;
(0xE<<5) ;
(0x1<<8) ;
) 7
(0xD<<7) ;
(0xXE<L5) ;
(0x1<<9) ;
) 7
(0xB<<7) ;
(0xXE<L5) ;
(0x1<<10) ;
) 7

motor) {
i; i< H

== 1)

’

)
)
)

one step 1(
one step 2(

’

one step 3(

1);

initializeGPIO() ;
while (1) {
digitalWrite (
digitalWrite (
motor;

motor

get button press();
if (motor > 0) {
digitalWrite (
ms_delay(100) ;
digitalWrite (’
== 1)

(motor == 2)

== 3)

if (motor dispense (1) ;

if dispense (2) ;

if (motor dispense (3) ;

}

motor

0;

C.2 RFID Sensor
MIFARE_RC522.c

#include "STM32F401RE SPI.h"
#include "MIFARE RC522.h"
#include ”STMBZFéOlREiGPIO.ﬁ"
rc522Init () |
pinMode (
digitalWrite (
delay (1) ;

digitalWrite (
delay (50) ;

writeRegister (

writeRegister (

writeRegister (

writeRegister (

writeRegister (

writeRegister (

writeRegister (

writeRegister (

writeRegister (

writeRegister (

antennaOn () ;

antennaOn () {

uint8 t value = readRegister (
if ((value & 0x03) !'= 0x03) {

writeRegister (

uint8 t readRegister (uint8 t reg) {
digitalWrite (, 4, 0);

spiSendReceive (0x80 | (reg << 1));

uint8 t value = spiSendReceive (0xAA) ;

digitalWrite (, 4, 1);
return value;

delay (50) ;

readRegisterMulti (uint8 t reg, uint8 t count, uint8 t *values) {
digitalWrite (, 4, 0);

spiSendReceive (0x80 | (reg << 1));

for (uint8 t index = 0; index < count +1; index++) {
values[index] = spiSendReceive (0xAA) ;

}

digitalWrite (1);

delay (50) ;

writeRegister (uint8 t reg, uint8 t value)
digitalWrite (, 4, 0);

spiSendReceive (0x00 | (reg << 1));

spiSendReceive (value) ;
digitalWrite (4, 1);
delay (50) ;

writeRegisterMulti (uint8 t reg, uint8 t count, uint8 t *values) {

digitalWrite (

spiSendReceive (0x00 | (reg << 1));

for (uint8 t index = 0; index < count; index++) {

spiSendReceive (values[index]) ;
}
digitalWrite (1);
delay (50) ;

setRegisterBitMask (uint8 t reg, uint8 t mask) {
uint8 t tmp;
tmp = readRegister (req);

writeRegister (reg, tmp | mask);

clearRegisterBitMask (uint8 t reg, uint8 t mask) {
uint8 t tmp;
tmp = readRegister (regqg);

writeRegister (reg, tmp & (~mask));

uint8 t wakeUpTag() {
uint8 t fifo;
clearRegisterBitMask (

writeRegister (

writeRegister (

setRegisterBitMask (

fifo = readRegister (

return fifo;

selectTag (uint8 t *uid)

uint8 t buffer[9];

rxAlign;

uint8 t txLastBits;

Jint87t index = 2;

clearRegisterBitMask (

buffer[0] =

txLastBits 0;

buffer[1] (index << 4) + txLastBits;

rxAlign = txLastBits;

writeRegister (, (rxAlign << 4) + txLastBits);

writeRegisterMulti (, 9, buffer):;
writeRegister () ;

setRegisterBitMask (, 0x80);

readRegisterMulti (, 9, buffer);

uint8 t bytesToCopy = 4;
uint8 t uidArr([4];

uint8 t count;

for (count = 0; count < bytesToCopy; count++) {

uidArr[count] = buffer[index++];
}

*uid = uidArr;

haltTag () {
uint8 t buffer[4];

buffer[0]

buffer[1] 0x00;

calculateCRC (buffer, 2, &buffer[2]);

writeRegisterMulti (, 4,

writeRegister (

setRegisterBitMask (

calculateCRC(uint8 t *data, uint8 t length, uint8 t *result)

writeRegister (;) ;

writeRegister (, 0x04);

writeRegister (, 0x80);
writeRegisterMulti (, length, data);

writeRegister (

while (! (readRegister (

writeRegister (

result[0] readRegister (

result[1l] readRegister (

reset () {

writeRegister (

delay (clkCycles) {
0;
while (i<clkCycles) {

i++;

{

MIFARE_RC522.h

#include <stdint.h>

#define

#define

uidByte[10];

sak;

rch522Init () ;
antennaOn () ;
readRegister (
readRegisterMulti (count,
writeRegister (value) ;

writeRegisterMulti (count, *values) ;

writeRegisterBitMask (mask) ;

clearRegisterBitMask (mask) ;
wakeUpTag () ;

selectTag (

haltTag() ;

calculateCRC (“dat: length,

vending_machine_aslw.c

"STM32F401RE FLASH.h"

"STM32F401RE _RCC.h"

"STM32F401RE_GPIO.h"
#include "STM32F401RE SPI.h"
#include "MIFARE RC522.h"

#include <stdint.h>

configureFlash () ;

configureClock() ;

spiInit(l6, 1, 1);

rc522Init () ;

while (1) {
while (wakeUpTag () == 0x52);

uint8 t uid[4];
selectTag(uid) ;
haltTag() ;

