
Vending Machine
E155 Final Project Report

December, 10 2021

Ava Sherry and Leila Wiberg

Abstract

They say millionaires have at least 6 streams of income. We decided to use this opportunity to
add another stream of income by creating a vending machine. Instead of buying one, we used
our knowledge of microprocessors to make a 6 item vending machine with an LCD driven by an
FPGA and motors driven by the MCU. The user simply needs to follow the instructions on the LCD
screen to get an item from the vending machine. The LCD displays “Select Item” in the idle state
while the MCU checks for a button press. The user presses one of six buttons, positioned relative
to the corresponding motor, and the motor turns. As the item is dispensing, the LCD displays
“Dispensing…” and no other buttons can be pressed. In later iterations, we plan to incorporate an
RFID sensor to require payment for items, however we felt that Harvey Mudd students deserved
their items for free.

Introduction

Normal children want Barbie houses, toy cars, or iPads, but Ava is different. Ever since she was a
child, she dreamed of having a vending machine of her own. This project aims to achieve that
childhood dream of providing 24/7 snacks and other items to our friends. After an all nighter in
the Digital Lab, we realized the importance of having machines that can provide sustenance at all
hours of the day.

This vending machine uses a MAX1000 FPGA and a STM32F401RE MCU to drive an LCD display
and 6 motors, respectively. The display waits in the idle state where it displays “Select Item”,
directing the user to press one of 6 buttons corresponding to 6 spaces in the vending machine.
Each space has a spiral dispenser and is mounted on a 28BYJ-48 stepper motor. The motors are
driven by 4 GPIO pins on the microcontroller. The microcontroller waits for a button press, then
begins to turn the corresponding motor as well as send a signal to the FPGA that a button has
been pressed, prompting it to change the display to read “Dispensing…”. Once the motor stops
turning, the MCU sends a signal to the FPGA to return to the idle “Select Item” state, and then
begins looking for a button press again.

New Hardware
Stepper Motors
We selected stepper motors to turn the spiral dispensers. Stepper motors are best for this
application because they will be moving at a low speed but a high torque, they hold their position
when not in use, and they are relatively precise with their movements. We selected 6 28BYJ-48
motors--one for each spiral dispenser. These are unipolar motors, which makes them simple to
drive. The 28BYJ-48 motors require only 5V of power supplied from a stripped USB charger
which makes powering them safer and simpler than high power and high torque motors. Using
the 5V supply from the MCU would draw too much current (240mA, whereas the MCU can only
supply about 20mA), so the motors require an external power supply and a driver. We selected
the ULN2003 driver (28BYJ-48 -- 5V Stepper Motor Manual). The ULN2003 is a transistor array
with Darlington pairs to amplify the current and voltage to drive the motor. It can drive up to
500mA and it has a 2.7kOhm base resistor to directly interface with 5V devices (ULN2003
Datasheet).

LCD Character Display
For this project we used an LCD Character Display to give instructions to the user. In its idle state
the LCD displays “Select Item”. Once a button is pressed, the MCU sends a signal to the FPGA
which changes the text to “Dispensing”. The LCD will continue to display “Dispensing” until the
FPGA receives the “done” signal from the MCU. This “done” signal tells the FPGA to change the
text back to “Select Item”.

The LCD screen has 16 pin outs, as shown in Figure 1.

Figure 1. LCD Character Display Pinouts

To write a character to the display you must first send a series of initialization commands then set
the register select to 1 (data register) and send an 8-bit encoding of the ASCII character you wish
to display. The letter encodings can be found in Appendix A.1. The initialization commands are
shown in Table 1. Once you set the new register select, read/write, and data bit registers, you
must write the enable high then low to send the data to the sensor.

reg_select read_write data_bits command

Initialization

0 0 0011xxxx function set
(only reads upper 4-bits)

0 0 0011xxxx function set
(only reads upper 4-bits)

0 0 0011xxxx function set
(only reads upper 4-bits)

0 0 001 DL N F xx function set
data length: 8-bit (DL = 1), 4-bit (DL = 0)
display line: 2-line (N = 1), 1-line (N = 0)

display font type: 5x10 (F = 1), 5x8 (F = 0)

0 0 00001000 turn display off

0 0 00000001 clear display

0 0 000001 I/D S entry mode
assign cursor moving direction and shift
Increments (I/D = 1), Decrements (I/D = 0)

Right Align (S = 1, I/D = 0), Left Aligh (S = 1, I/D = 1)

0 0 00001 D C B display on
set display (D), cursor (C), and blinking of cursor (B)

Write Character

1 0 xxxxxxxx
01000001

ascii encoding of character
write “A”

Table 1. LCD Character Display Commands

RFID Sensor
The purpose of the RFID sensor was to act as a means to “purchase” the items in our vending
machine. The simplified block diagram of the RC522 RFID Sensor can be seen in Figure 2.
Contactless UART protocol used to communicate between the sensor and the RFID tags. We
used SPI protocol to communicate between the MCU and the RFID sensor. To use the RFID
sensor you must first initialize the SPI connection and the RC522 sensor and turn the antenna on.
Then you can begin sending commands to the CommandReg. Table 2 shows the different
commands for the RC522

Figure 2. Simplified Block Diagram of the MIFARE RC522 RFID Sensor

Table 2. RC522 Command Overview

To communicate with the RFID Tag (PICC) we used the Tranceive command. This command
transmits data stored in the FIFO buffer and receives data from the PICC which is then stored
back in the FIFO buffer. To read the UID of the PICC you must follow the state diagram shown in
Figure 3.

Figure 3. PICC Type A State Diagram

When a PICC is presented to the sensor (PCD) the PCD must send the wakeup command (WUPA)
to put the PICC in the Ready state. The PCD must then send the select command to the PICC.
The select command returns the UID of the PICC. The PCD must then send the HALT command
(HLTA) to put the PICC in the Halt state. So that it can be read again. To send a command to the
PICC the PCD writes the data to be sent to the FIFO buffer then writes the Transcieve command
to the Command register.

Schematic

Figure 4. Full Schematic for Vending Machine

Microcontroller Design
RFID Sensor
For the RFID sensor we ran into issues communicating with the PICC. We were able to write the .c
and .h files for the new sensor. The .c file contained the following functions; writeRegister(reg,
value), readRegister(reg), wakeUpTag(), selectTag(uid), haltTag(), and rc522Init(). We were able to
confirm that our writeRegister and readRegister functions were working correctly by scoping
them using the logic analyzer. Figure 5 shows that we were able to correctly write 0x7F to the
FIFODataReg and read that value back. This showed us that our SPI connection between the
MCU and the RC522 was working

Figure 5. Logic Analyzer of PCD SPI Connection

We ran into issues with this sensor when we tried to communicate between the PCD and the
PICC. We tried to run the wake up command which put 0x52 in the FIFO buffer. When a card is
presented the PCD should receive data from the card (i.e the FIFODataReg should no longer read
0x52). We suspect there were issues in our initialization steps since we never got the FIFO buffer
to change when a card was present. Figure 6 shows the scope from the logic analyzer when we
ran the wakeUpTag command and presented a card to the reader. As you can see the
FIFODataReg continues to read 0x52.

Figure 6. Logic Analyzer of wakeUpTag function

Stepper Motors
The MCU drives 3 28BYJ-48 stepper motors with 4 pins for each motor. A second MCU was
needed to increase the number of available GPIO pins. The MCU was selected to control the
motors because designing the motor drivers would be simple.

The 28BYJ-48 motors have 5 pins, 4 of which each connect to a magnetic coil inside the motor,
and the 5th connects to an external 5V power supply. When a pin goes high, it causes current to
flow through the magnetic coil, creating a magnetic field which attracts the nearest teeth of the
cogged wheel (Stepper Motor Basics). This turns the gear and therefore the motor. The sequence
of pins determines the direction that the motor turns and the speed of the pulses determines the
speed of the motor. The gear ratio of the motor is 1/64, so it takes 512 wave mode cycles for a full
rotation (28BYJ-48 -- 5V Stepper Motor). We drove the motors in wave mode, where each pin
goes high sequentially, as shown in Figure 7. Wave mode is the simplest mode but it also
provides high torque. Due to the fact that the timing of these pulses is extremely important, I
directly used statements in the code to set the bits of the ODR register to write the pin high. This
solved an issue with timing when using the function DigitalWrite.

Figure 7. Logic Analyser of Stepper Motor Signals

The MCU controls the motors, takes in signals from the buttons, and sends signals to the FPGA.
The MCU checks every 1ms if a button is pressed. If it detects a signal, it waits another 1ms and
checks again, which ensures that there are no false signals and the signal is debounced. Upon
detecting a button press, it determines the corresponding motor and begins driving the motor in
wave mode to turn it. The motors are rated at 100Hz, so we used a 2ms delay and slowed down
the clock to ensure the gear turns fully before the next pin goes high. When a button is pressed,
it also sends a 100ms pulse to the FPGA, which has a slower clock. The motors turn 612 rotations,
which we determined through mechanical testing to be an appropriate amount to dispense an
item. Once the motor has turned fully, it sends another 100ms pulse to the FPGA to signal that the
motor is done. The MCU then resets all of the pins and begins looking for another button press
input.

FPGA Design
The FPGA was used to drive the LCD Character Display. We used the FPGA for this sensor since
there were specific timing constraints that needed to be met. These timing constraints are easiest
to meet on the FPGA using a state machine.

To meet these timing constraints we generated a slow clock by dividing our 16MHz by 262144 to
create a 61 Hz clock. A diagram of how we created our slow clock is shown in Figure 8. In our
code, we set clk_divide to an 19-bit binary number. Since our clock runs at 61 Hz we have 16ms in
between each clock cycle. This meets the longest timing requirement which requires us to wait 15
ms after powering the device on to input data.

Figure 8. Slow clock signal

At every positive slow clock edge the FPGA moves to the next state and the new values for
register select, read/write, and data_bits [7:0] are shifted into the registers. The state machine
can be seen in Figure 9.

Figure 9. Finite State Machine for LCD Character Display

State 0 through 7 step through the initialization commands. In state 7, the FPGA writes “SELECT
ITEM” to the display and steps into S9. S9 is the idle state. The FPGA waits in this state until it
receives either a button pressed or done input signal. If the a button is pressed the
button_pressed signal will go HIGH and the FPGA will step to S8 where “Dispensing. . .” gets
written to the display. It then waits in S9 until it receives the “done” signal from the MCU
indicating that the motors have turned off and the item has been dispensed. Once the FPGA
receives the done signal it jumps to S7 to write “Select Item” on the display before waiting for the
next button to be pressed.

One of the tricky parts of this sensor is setting the enable pin correctly so that it meets the timing
constraints. A high level overview of the process is as follows:

1. Set register select, read/write, data bits and wait at least 40 ms to let them settle
2. Bring enable high and hold for at least 230ns
3. Bring enable low and leave data stable for at least 10 ns
4. Wait a minimum of 40µs (for character commands) or 1.64ms (for instruction commands)

before entering the next byte.
To do this I set the enable pin high for one fast clock cycle. This can be seen in the simulated
signals in Figure 10.

Figure 10. ModelSim signals for LCD FSM

With RFID
Here’s a general overview of how the RFID would be added to our system

- The user would first press a button selecting their item.
- The display would then show “Scan tag” prompting the user to scan their RFID tag
- The RFID sensor would read the tag and check whether or not the UID of the tag was on

the list of acceptable ids.
- If so, the MCU would write the “tag_accepted” signal high and send the signal to the

FPGA.
- The FPGA would take the tag_accepted input and use that to determine what text to

display on the LCD

A block diagram of the FPGA can be seen in Figure 11.

Figure 11. Block Diagram of FPGA

Mechanical Design
The vending machine is designed to be aesthetically pleasing and easy to use. The front of the
machine catches the user’s eye with a large window to view the items on the left and the LCD
and buttons on the right. The user simply follows the instructions on the machine to “SELECT
ITEM” by pressing a button, then the item begins dispensing and the LCD displays
“DISPENSING…”. The spiral dispensers turn and the item the user selects falls to the bottom of the
left side, where the user can reach into a small opening and pick it up.

Figure 12. Vending Machine Housing Drawing

Primarily made of particle board, the box and shelves that house the electronics and dispensers
is approximately 2’x2’x2’. The 6 shelves inside are designed to dispense items up to 4”x6”. The
spiral dispensers are 12” long with 5-6 locations in each spiral dispenser for the operator to place
items. The dispensers are made of ¼” copper wire and mounted to a cardboard disk with hot
glue. The center of the disk is glued to the motors so that the spiral turns as the motor turns. The
front of the vending machine is cardboard with holes cut out for the window, LCD display,
buttons, and slot to retrieve items.

Figure 13. Vending Machine Setup

Results
Our final product is a working vending machine with 6 buttons, 5 motors, and an LCD display. The
user simply presses a button and the vending machine dispenses an item while the LCD displays,
“Dispensing…”, and once the motor stops turning the LCD returns to displaying “Select Item”. The
RFID sensor was not functional at checkoff time but with more time we hope to figure out how to
utilize the contactless UART connection to communicate the PICC and PCD and integrate it into
our system.

The LCD display proved to be especially tricky. We created and debugged an FSM. The FSM
forced us to think about the hardware implementation of our logic. This especially tripped us up
when we had to write a flip flop for the i variable which we used to iterate over the characters in
the string. This FSM gave us great practice at using ModelSim to debug our errors. Another tricky
part of this sensor was making sure all the timing constraints were met and that the data was
stable before writing the enable signal HIGH. This was done by utilizing a combination of a slow
and fast clock.

The RFID sensor gave us great practice with debugging an SPI connection using a logic analyzer.
Through this debugging process we were able to solidify our understanding of clock phase and
polarity. Overall we were able to successfully communicate between the RFID sensor and the
MCU. We eventually ran out of time and were unable to successfully communicate between the
PICC and the PCD. We believe this was due to missing steps in our initialization of the RC522.

We originally planned to use an enable for each motor and use the same 4 GPIO pins to power
the magnetic coils on each motor. This would use less GPIO pins and only require one MCU.
However, after testing with some transistors, we destroyed an MCU by accidentally drawing too

much current by trying to power all of the motors at once. Instead, we could use an H-bridge to
select between motors and reduce the number of pins required.

The 28BYJ-48 motors provide the exact amount of torque necessary to turn the spiral dispensers.
For the final demonstration, we decided to dispense paper so that the motors are not
overpowered and unable to turn due to the extra weight. To improve this, we might increase the
voltage of the motors or add a gear system to increase the torque applied to the spirals.

The mechanical design of the vending machine could use some improvements. The front of the
vending machine is cardboard, but a particle board front would be sturdier and more secure. This
could be attached with hinges and a latch that locks. Most of the motors and electronics are
mounted with tape, but we would like to use screws for a more permanent and reliable design.
The cardboard disk that connects the motor and spiral is hot glued together but this could be
improved with a plastic gear that doesn’t bend and a perfect slot for the motor dowel. The bottom
slot to get the item could have a board to block the user from reaching up to grab an item from
the machine.

References

Heymsfeld, Ralph. “Adding a Character LCD to an FPGA Project.” The Robot Diaries, 21 March

2019, http://robotics.hobbizine.com/fpgalcd.html.

LCM Module TC1602A-09T Datasheet. 4 6 2009. TC1602A-09T SpecV00 2009-06-04, Tinsharp

Industrial Co., Ltd., https://cdn-shop.adafruit.com/product-files/181/p181.pdf.

Stepper Motor Basics. 6, 1-6, Industrial Circuits,

https://www.geeetech.com/Documents/Stepper%20motor%20basic.pdf.

28BYJ-48 -- 5V Stepper Motor. 28BYJ 48 Stepper Motorx Motor Manual,

https://usermanual.wiki/Pdf/Stepper20Motor20Manual.1122402138/view.

ULN2003 Datasheet. December 1976. High Voltage High Current Darlington Transistor Arrays,

Texas Instruments, https://www.geeetech.com/Documents/ULN2003%20datasheet.pdf.

Bill of Materials
Item Description Quantity Vendor Price

28BYJ-48 Motors and
ULN2003 Drivers

Motors and Transistor
Array

6 Amazon $12.99

Mifare RC522 RF IC Card
Sensor Module

RFID Sensor 6 Amazon $5.49

NFC Smart Card tag Tags
1k S50 IC 13.56MHz

RFID Cards 10 Amazon $7.99

LCD Screen LCD Screen 1 HMC Digital Lab -

8’x4’ Particle Board Box and Shelving 1 Lowes $25

Pushbutton Switches Buttons 6 Amazon $7.99

¼” Metal Dowels Shelf Support 4 HMC Stockroom -

Wood Glue To bond shelves and
housing

N/A HMC Machine Shop -

1.2kOhm Resistors Pulldown Resistors for
Buttons

6 HMC Digital Lab -

Extra Large Cardboard
Box

Vending Machine front
and wire mount

1 HMC Recycling Bin -

Tape and Hot Glue For mounting electronics
and dispensers

N/A HMC Makerspace -

2”x8” Breadboard 2 for motors, 1 for LCD 3 Pre-owned -

10’ Copper Wire, 1’4”
diameter

Spiral Dispensers 1 Lowes $8.99

STM32F401RE Microcontroller 2 E155 Kit -

MAX1000 FPGA 1 E155 Kit -

Miles and Miles of Wire Wires N/A HMC Digital Lab and
Stockroom

-

TOTAL $68.45

Appendix A: LCD Character Display
A.1 Character Encodings

Appendix B: Verilog Code
/*

E155 Final Project

Name: Ava Sherry & Leila Wiberg

Date: 11/10/21

*/

module lcd_char_display(

input logic clk_in,

input logic reset,

input logic button_pressed, done,

output logic [7:0] data_bits,

output logic reg_select, read_write, enable

);

logic [18:0] clk_divide;

always @(posedge clk_in)

if (reset)

begin

clk_divide <= 18'b0;

enable <= 0;

end

else

if (clk_divide[18])

begin

enable <= 1;

clk_divide <= clk_divide + 1;

end

else

begin

enable <= 0;

clk_divide <= clk_divide + 1;

end

lcd_fsm fsm(clk_divide[18], reset, button_pressed, done, reg_select, read_write,

data_bits);

endmodule

module lcd_fsm(

input logic clk_in,

input logic reset,

input logic button_pressed, done,

output logic reg_select, read_write,

output logic [7:0] data_bits

);

logic [7:0] i;

logic [7:0] text[15:0];

logic [7:0] text_1[15:0] = '{" ", " "," ", "M","E","T","I", "

","T","C","E","L","E","S"," ", " "};

logic [7:0] text_2[15:0] = '{" ", " ",".", ".",

".","G","N","I","S","N","E","P","S","I","D"," "};

logic [7:0] len_text = 8'b00010000;

logic [3:0] state, nextstate;

parameter S0 = 4'b0000;

parameter S1 = 4'b0001;

parameter S2 = 4'b0010;

parameter S3 = 4'b0011;

parameter S4 = 4'b0100;

parameter S5 = 4'b0101;

parameter S6 = 4'b0110;

parameter S7 = 4'b0111;

parameter S8 = 4'b1000;

parameter S9 = 4'b1001;

// State Register

always_ff @(posedge clk_in or posedge reset)

if (reset) state <= S0;

else state <= nextstate;

// i Flip-Flop

always_ff @(posedge clk_in)

if (state == S7 && i != len_text) i <= i + 1;

else if (state == S9 && i == len_text) i <= 0;

else if (state == S8 && i != len_text) i <= i + 1;

else i <= 0;

// Next State Logic

always_comb

case (state)

// Initialize LCD Display (S0-S6)

S0: begin // ** INITIALIZE **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00110000; // initialization

nextstate <= S1;

end

S1: begin // ** INITIALIZE **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00110000; // initilization

nextstate <= S2;

end

S2: begin // ** INITIALIZE **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00110000; // initialization

nextstate <= S3;

end

S3: begin // ** TURN DISPLAY OFF **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00001000; // display off

nextstate <= S4;

end

S4: begin // ** TO CLEAR DISPLAY **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00000001; // clear display

nextstate <= S5;

end

S5: begin // ** ENTRY MODE **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00000110; // entry mode, assign cursor

moving direction (D)

nextstate <= S6;

end

S6: begin // ** TURN DISPLAY ON **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00001100; // turn display on and set

display

nextstate <= S7;

end

// Write "Select Item"

S7: begin

if (i == len_text)

begin // ** RETURN HOME **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00000010; // return home

nextstate <= S9;

end

else

begin // ** WRITE DATA **

reg_select <= 1; // data register

read_write <= 0; // to write data

data_bits <= text_1[i]; // write char

nextstate <= S7;

end

end

// Write "Dispensing..."

S8: begin

if (i == len_text)

begin // ** RETURN HOME **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00000010; // return home

nextstate <= S9;

end

else

begin // ** WRITE DATA **

reg_select <= 1; // data register

read_write <= 0; // to write data

data_bits <= text_2[i]; // write char

nextstate <= S8;

end

end

// Idle

S9: begin

if (done == 1)

begin // ** CLEAR DISPLAY **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00000001; // clear display

nextstate <= S7;

end

else if (button_pressed == 1)

begin // ** CLEAR DISPLAY **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00000001; // clear display

nextstate <= S8;

end

else

begin // ** RETURN HOME **

reg_select <= 0; // instruction register

read_write <= 0; // to write data

data_bits <= 8'b00000010; // return home

nextstate <= S9;

end

end

default:

nextstate <= S0;

endcase

endmodule

Appendix C: Microcontroller Code

C.1 Stepper Motors
The complete software include RCC.h, RCC.c, GPIO.h, GPIO.c, and main.c can be viewed at
https://github.com/lwiberg/vending-machine. The files besides main.c are from previous labs
found on the class github.
Main.c
#include "STM32F401RE_RCC.h"

#include "STM32F401RE_GPIO.h"

https://github.com/lwiberg/vending-machine

#define NUM_STEPS 612 //number of steps to dispense (512=full rotation)

#define MS_DELAY 2 //delay between steps

#define BUTTON_1 10

#define BUTTON_2 1

#define BUTTON_3 4

#define BUTTON_PRESSED 0 //GPIOA, Analog Pin 1

#define DONE 0 //GPIOB, Analog Pin 4

void initializeGPIO()

{

//Set Up Clock

RCC->CFGR.PPRE2 = 0b000; //APB High Speed Prescaler = 0

RCC->CFGR.HPRE = 0b1001; //AHP Prescaler = 4

RCC->AHB1ENR.GPIOAEN = 1; //turn on clock to GPIOA

RCC->AHB1ENR.GPIOBEN = 1;

//Set pins to output mode

//MOTOR 1

pinMode(GPIOA, 6, GPIO_OUTPUT);

pinMode(GPIOA, 7, GPIO_OUTPUT);

pinMode(GPIOA, 8, GPIO_OUTPUT);

pinMode(GPIOA, 9, GPIO_OUTPUT);

//MOTOR 2

pinMode(GPIOB, 3, GPIO_OUTPUT);

pinMode(GPIOB, 4, GPIO_OUTPUT);

pinMode(GPIOB, 5, GPIO_OUTPUT);

pinMode(GPIOB, 6, GPIO_OUTPUT);

//MOTOR 3

pinMode(GPIOA, 5, GPIO_OUTPUT);

pinMode(GPIOB, 8, GPIO_OUTPUT);

pinMode(GPIOB, 9, GPIO_OUTPUT);

pinMode(GPIOB, 10, GPIO_OUTPUT);

//Buttons

pinMode(GPIOA, 10, GPIO_INPUT); //Button 1

pinMode(GPIOA, 1, GPIO_INPUT); //Button 2

pinMode(GPIOA, 4, GPIO_INPUT); //Button 3

//Signals to FPGA

pinMode(GPIOB, 0, GPIO_OUTPUT); //Done to FPGA

pinMode(GPIOA, 0, GPIO_OUTPUT); //Button Pressed to FPGA

}

void ms_delay(int ms) {

while (ms-- > 0) {

volatile int x=1000;

while (x-- > 0)

__asm("nop");}

}

int get_button_press(){

ms_delay(2); //debounce

if (digitalRead(GPIOA, BUTTON_1)>0) return 1;

if (digitalRead(GPIOA, BUTTON_2)>0) return 2;

if (digitalRead(GPIOA, BUTTON_3)>0) return 3;

return 0;

}

void one_step_1(){

//wave mode

GPIOA->ODR &= (0x7<<6); //reset pins to 0

GPIOA->ODR |= (0x1<<6); //pin pa6 high (in 1 to motor 1)

ms_delay(MS_DELAY);

GPIOA->ODR &= (0xE<<6);

GPIOA->ODR |= (0x1<<7);

ms_delay(MS_DELAY);

GPIOA->ODR &= (0xD<<6);

GPIOA->ODR |= (0x1<<8);

ms_delay(MS_DELAY);

GPIOA->ODR &= (0xB<<6);

GPIOA->ODR |= (0x1<<9);

ms_delay(MS_DELAY);

}

void one_step_2(){

//wave mode

GPIOB->ODR &= (0x7<<3); //reset pins to 0

GPIOB->ODR |= (0x1<<3); //set pb3 high (in 1 to motor 2)

ms_delay(MS_DELAY);

GPIOB->ODR &= (0xE<<3);

GPIOB->ODR |= (0x1<<4);

ms_delay(MS_DELAY);

GPIOB->ODR &= (0xD<<3);

GPIOB->ODR |= (0x1<<5);

ms_delay(MS_DELAY);

GPIOB->ODR &= (0xB<<3);

GPIOB->ODR |= (0x1<<6);

ms_delay(MS_DELAY);

}

void one_step_3(){

//wave mode

GPIOB->ODR &= (0x7<<7); //reset GPIOB pins to 0

GPIOA->ODR &= (0x7<<5); //reset GPIOA pin to 0

GPIOA->ODR |= (0x1<<5); //set pa5 high (in 1 to motor 3)

ms_delay(MS_DELAY);

GPIOB->ODR &= (0xE<<7);

GPIOA->ODR &= (0xE<<5);

GPIOB->ODR |= (0x1<<8);

ms_delay(MS_DELAY);

GPIOB->ODR &= (0xD<<7);

GPIOA->ODR &= (0xE<<5);

GPIOB->ODR |= (0x1<<9);

ms_delay(MS_DELAY);

GPIOB->ODR &= (0xB<<7);

GPIOA->ODR &= (0xE<<5);

GPIOB->ODR |= (0x1<<10);

ms_delay(MS_DELAY);

}

void dispense(int motor){

for(volatile int i; i<NUM_STEPS; i = i+1){

if (motor == 1) one_step_1();

if (motor == 2) one_step_2();

if (motor == 3) one_step_3();

}

digitalWrite(GPIOB, DONE, 1);

ms_delay(100);

}

int main(void)

{

initializeGPIO();

while (1){

digitalWrite(GPIOB, DONE, 0); //reset

digitalWrite(GPIOA, BUTTON_PRESSED, 0); //reset

int motor;

motor = get_button_press();

if (motor > 0){

digitalWrite(GPIOA, BUTTON_PRESSED, 1); //send signal to FPGA

ms_delay(100);

digitalWrite(GPIOA, BUTTON_PRESSED, 0); //send signal to FPGA

if (motor == 1) dispense(1); //turn on motor 1

if (motor == 2) dispense(2); //turn on motor 2

if (motor == 3) dispense(3); //turn on motor 3

}

motor = 0;

}

}

C.2 RFID Sensor
MIFARE_RC522.c
// MIFARE_RC522.c

// RC522 function declarations

#include "STM32F401RE_SPI.h"

#include "MIFARE_RC522.h"

#include "STM32F401RE_GPIO.h"

void rc522Init() {

// perform hard reset

pinMode(GPIOA, 1, GPIO_OUTPUT); // PA4 --> OUTPUT

digitalWrite(GPIOA, 1, 0);

delay(1);

digitalWrite(GPIOA, 1, 1);

delay(50);

// Reset baud rates

writeRegister(TxModeReg, 0x00);

writeRegister(RxModeReg, 0x00);

// Reset ModWidthReg

writeRegister(ModWidthReg, 0x26);

writeRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the

end of the transmission in all communication modes at all speeds

writeRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg,

ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25μs.

writeRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms

before timeout.

writeRegister(TReloadRegL, 0xE8);

writeRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation

independent of the ModGsPReg register setting

writeRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the

CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4)

writeRegister(CommandReg, 0x00); // Switch analog reciever on

antennaOn(); // Enable the antenna driver pins TX1 and TX2

(they were disabled by the reset)

}

void antennaOn() {

uint8_t value = readRegister(TxControlReg);

if ((value & 0x03) != 0x03) {

writeRegister(TxControlReg, value | 0x03);

}

}

uint8_t readRegister(uint8_t reg) {

digitalWrite(GPIOA, 4, 0); // write NSS pin low

spiSendReceive(0x80 | (reg << 1)); // Address must be in form 1xxxxxx0

for read mode where xxxxxx is the address

uint8_t value = spiSendReceive(0xAA); // Read the value

digitalWrite(GPIOA, 4, 1); // write NSS pin high

return value;

delay(50);

}

void readRegisterMulti(uint8_t reg, uint8_t count, uint8_t *values) {

digitalWrite(GPIOA, 4, 0); // write NSS pin low

spiSendReceive(0x80 | (reg << 1)); // Address must be in form 1xxxxxx0 for read

mode where xxxxxx is the address

for (uint8_t index = 0; index < count +1; index++) {

values[index] = spiSendReceive(0xAA);

}

digitalWrite(GPIOA, 4, 1); // write NSS pin high

delay(50);

}

void writeRegister(uint8_t reg, uint8_t value) {

digitalWrite(GPIOA, 4, 0); // write NSS pin low

spiSendReceive(0x00 | (reg << 1)); // Address must be in form 0xxxxxx0 for

write mode where xxxxxx is the address

spiSendReceive(value); // write value to register

digitalWrite(GPIOA, 4, 1); // write NSS pin high

delay(50);

}

void writeRegisterMulti(uint8_t reg, uint8_t count, uint8_t *values) {

digitalWrite(GPIOA, 4, 0); // write NSS pin low

spiSendReceive(0x00 | (reg << 1)); // Address must be in form 0xxxxxx0 for

write mode where xxxxxx is the address

for (uint8_t index = 0; index < count; index++) {

spiSendReceive(values[index]);

}

digitalWrite(GPIOA, 4, 1); // write NSS pin high

delay(50);

}

// sets specific bits of register value without altering rest of bits

// xxxxxxxx | 00000101 --> xxxxx1x1 [mask = 00000101]

void setRegisterBitMask(uint8_t reg, uint8_t mask) {

uint8_t tmp;

tmp = readRegister(reg);

writeRegister(reg, tmp | mask);

}

// clears specific bits of register value without altering rest of bits

// xxxxxxxx & (~00000101) --> xxxxx0x0 [mask = 00000101]

void clearRegisterBitMask(uint8_t reg, uint8_t mask) {

uint8_t tmp;

tmp = readRegister(reg);

writeRegister(reg, tmp & (~mask));

}

// Transmits WAKE UP command, Type A. Puts tags in state IDLE or HALT into state READY

uint8_t wakeUpTag() {

uint8_t fifo;

clearRegisterBitMask(CollReg, 0x80); // Sets ValuesAfterColl = 0

writeRegister(FIFODataReg, 0x52); // Tag WAKE UP command

(PICC_CMD_WUPA)

writeRegister(CommandReg, PCD_TRANSCEIVE); // Transmit data from FIFO buffer

setRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of

data starts

fifo = readRegister(FIFODataReg);

return fifo;

}

void selectTag(uint8_t *uid) {

uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7

byte standard frame + 2 bytes CRC_A

uint8_t rxAlign; // Used in BitFramingReg. Defines the bit

position for the first bit received.

uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits

in the last transmitted byte.

uint8_t index = 2;

// Description of buffer structure:

// Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1,

PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3

// Byte 1: NVB Number of Valid Bits (in complete command, not

just the UID): High nibble: complete bytes, Low nibble: Extra bits.

// Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.

// Byte 3: UID-data

// Byte 4: UID-data

// Byte 5: UID-data

// Byte 6: BCC Block Check Character - XOR of bytes 2-5

// Byte 7: CRC_A

// Byte 8: CRC_A

// The BCC and CRC_A are only transmitted if we know all the UID bits of the

current Cascade Level.

//

// Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID

contents and cascade levels)

// UID size Cascade level Byte2 Byte3 Byte4 Byte5

// ======== ============= ===== ===== ===== =====

// 4 bytes 1 uid0 uid1 uid2 uid3

// Prepare MFRC522

clearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received

after collision are cleared.

buffer[0] = PICC_CMD_SEL_CL1;

// Repeat anti collision loop until we can transmit all UID bits + BCC and receive

a SAK - max 32 iterations.

// This is an ANTICOLLISION.

txLastBits = 0;

buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits

// Set bit adjustments

rxAlign = txLastBits; // Having a

separate variable is overkill. But it makes the next line easier to read.

writeRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign =

BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]

// Transmit the buffer and receive the response.

writeRegisterMulti(FIFODataReg, 9, buffer);

writeRegister(CommandReg, PCD_TRANSCEIVE); // Transmit data from FIFO buffer

setRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of

data starts

readRegisterMulti(FIFODataReg, 9, buffer);

// Copy the found UID bytes from buffer[] to uid

// index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in

buffer[]

// bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4;

uint8_t bytesToCopy = 4;

uint8_t uidArr[4];

uint8_t count;

for (count = 0; count < bytesToCopy; count++) {

uidArr[count] = buffer[index++];

}

*uid = uidArr;

}

void haltTag() {

uint8_t buffer[4];

// Build command buffer

buffer[0] = PICC_CMD_HLTA;

buffer[1] = 0x00;

// Calculate CRC_A

calculateCRC(buffer, 2, &buffer[2]);

writeRegisterMulti(FIFODataReg, 4, buffer);

writeRegister(CommandReg, PCD_TRANSCEIVE); // Transmit data from FIFO buffer

setRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of

data starts

}

void calculateCRC(uint8_t *data, uint8_t length, uint8_t *result) {

writeRegister(CommandReg, PCD_IDLE); // Stop any active command.

writeRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request

bit

writeRegister(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization

writeRegisterMulti(FIFODataReg, length, data); // Write data to the FIFO

writeRegister(CommandReg, PCD_CALCCRC); // Start the calculation

while(!(readRegister(DivIrqReg) & 0x04)); // wait for CRCIRq bit set - i.e

calculation done

writeRegister(CommandReg, PCD_IDLE); // Stop calculating CRC for new content in

the FIFO.

result[0] = readRegister(CRCResultRegL);

result[1] = readRegister(CRCResultRegH);

}

void reset() {

writeRegister(CommandReg, PCD_RESET); // Issue the SoftReset command.

// Wait for the PowerDown bit in CommandReg to be cleared

// while (readRegister(CommandReg) & (1 << 4));

}

void delay(int clkCycles){

int i = 0;

while(i<clkCycles){

i++;

}

}

MIFARE_RC522.h
// MIFARE_RC522.h

// Header for RC522 functions

#ifndef RC522_H

#define RC522_H

#include <stdint.h> // Include stdint header

// PCD (Proximity Coupling Device): MFRC522 Contactless Reader IC

// PICC (Proximity Integrated Circuit Card): card or tag

///

// Bitfield structs

///

// MF522 (PCD) command

#define PCD_IDLE 0x00 // no action, cancels current command execution

#define PCE_MEM 0x01 // stores 25 bytes into the internal buffer

#define PCD_GENRANDOMID 0x02 // generates a 10-byte random ID number

#define PCD_CALCCRC 0x03 // activates the CRC coprocessor or performs a

self test

#define PCD_TRANSMIT 0x04 // transmits data from the FIFO buffer

#define PCD_NOCMDCHANGE 0x07 // no command change, can be used to modify the

CommandReg register bits without affecting the command, for example, the PowerDown bit

#define PCD_RECEIVE 0x08 // activates the receiver circuits

#define PCD_TRANSCEIVE 0x0C // transmits data from FIFO buffer to antenna and

automatically activates the receiver after transmission

#define PCD_AUTHENT 0x0E // performs the MIFARE standard authentication as

a reader

#define PCD_RESET 0x0F // resets the MFRC522

// card (PICC) command

#define PICC_REQIDL 0x26

#define PICC_READ 0x30 // Reads one 16 byte block from the authenticated

sector of the PICC

#define PICC_HALT 0x50

#define PICC_REQALL 0x52

#define PICC_AUTHENT1A 0x60 // Perform authentication with Key A

#define PICC_AUTHENT1B 0x61 // Perform authentication with Key B

#define PICC_ANTICOLL1 0x93

#define PICC_ANTICOLL2 0x95

#define PICC_ANTICOLL3 0x97

#define PICC_WRITE 0xA0 // Writes one 16 byte block to the authenticated

sector of the PICC

#define PICC_TRANSFER 0xB0 // Writes the contents of the internal data

register to a block

#define PICC_DECREMENT 0xC0

#define PICC_INCREMENT 0xC1

#define PICC_RESTORE 0xC2 // Reads the contents of a block into the internal

data register

#define PICC_CMD_WUPA 0x52 // Wake up command

#define PICC_CMD_SEL_CL1 0x93

#define PICC_CMD_CT 0x88 // Cascade Tag

#define PICC_CMD_HLTA 0x50 // HALT command, Type A. Instructs an ACTIVE PICC

to go to state HALT.

//MF522 (PCD) registers

#define CommandReg 0x01

#define ComIEnReg 0x02

#define DivlEnReg 0x03

#define ComIrqReg 0x04

#define DivIrqReg 0x05

#define ErrorReg 0x06

#define Status1Reg 0x07

#define Status2Reg 0x08

#define FIFODataReg 0x09

#define FIFOLevelReg 0x0A

#define WaterLevelReg 0x0B

#define ControlReg 0x0C

#define BitFramingReg 0x0D

#define CollReg 0x0E

#define ModeReg 0x11

#define TxModeReg 0x12

#define RxModeReg 0x13

#define TxControlReg 0x14

#define TxASKReg 0x15

#define TxSelReg 0x16

#define RxSelReg 0x17

#define RxThresholdReg 0x18

#define DemodReg 0x19

// 0x1A

// 0x1B

#define MifareTxReg 0x1C

#define MifareRxReg 0x1D

// 0x1E

#define SerialSpeedReg 0x1F

#define CRCResultRegH 0x21

#define CRCResultRegL 0x22

// 0x23

#define ModWidthReg 0x24

// 0x25

#define RFCfgReg 0x26

#define GsNReg 0x27

#define CWGsCfgReg 0x28

#define ModGsCfgReg 0x29

#define TModeReg 0x2A

#define TPrescalerReg 0x2B

#define TReloadRegH 0x2C

#define TReloadRegL 0x2D

#define TCounterValueRegH 0x2E

#define TCounterValueRegL 0x2F

#define TestSel1Reg 0x31

#define TestSel2Reg 0x32

#define TestPinEnReg 0x33

#define TestPinValueReg 0x34

#define TestBusReg 0x35

#define AutoTestReg 0x36

#define VersionReg 0x37

#define AnalogTestReg 0x38

#define TestDAC1Reg 0x39

#define TestDAC2Reg 0x3A

#define TestADCReg 0x3B

///

// MF522

///

#define TAG_OK 0

#define TAG_NOTAG (1)

#define TAG_ERR (2)

#define TAG_ERRCRC (3)

#define TAG_COLLISION (4)

typedef char tag_stat;

// A struct used for passing the UID of a PICC.

typedef struct {

uint8_t size; // Number of bytes in the UID. 4, 7 or 10.

uint8_t uidByte[10];

uint8_t sak; // The SAK (Select acknowledge) byte returned from

the PICC after successful selection.

} uid;

///

// Function prototypes

///

void rc522Init();

void antennaOn();

uint8_t readRegister(uint8_t reg);

void readRegisterMulti(uint8_t reg, uint8_t count, uint8_t *values);

void writeRegister(uint8_t reg, uint8_t value);

void writeRegisterMulti(uint8_t reg, uint8_t count, uint8_t *values);

void writeRegisterBitMask(uint8_t reg, uint8_t mask);

void clearRegisterBitMask(uint8_t reg, uint8_t mask);

uint8_t wakeUpTag();

void selectTag(uint8_t *uid);

void haltTag();

void calculateCRC(uint8_t *data, uint8_t length, uint8_t *result);

#endif

vending_machine_aslw.c
// card_reader_aslw.c

/*

Author: Ava Sherry

Email: asherry@hmc.edu

Date: 11/17/21

*/

#include "STM32F401RE_FLASH.h"

#include "STM32F401RE_RCC.h"

#include "STM32F401RE_GPIO.h"

#include "STM32F401RE_SPI.h"

#include "MIFARE_RC522.h"

#include <stdint.h> // for integer types (i.e., uint32_t)

void main(void) {

// Configure flash and clock

configureFlash();

configureClock(); // Set system clock to 84 MHz

// Configure SPI

spiInit(16, 1, 1);

// Configure MIFARE RC522

rc522Init();

while(1) {

while(wakeUpTag() == 0x52); // Wait until tag is present i.e FIFO

buffer changes

uint8_t uid[4];

selectTag(uid);

haltTag();

}

}

