
Microprocessor Final Report
Michael Jang and George Wang

12/10/21

Abstract:

A breathalyzer is a device that measures and displays the breath alcohol content (BrAC)

of a person. It samples the air that it detects for ethanol, and some models use this to change

the voltage output of a printed circuit board (PCB). A simple circuit was constructed to fit the

constraints of the analog-digital converter (ADC) on the STM32F401RE microcontroller unit

(MCU). The ADC reading is then processed on the MCU and transformed into the appropriate

two-digit reading, which is 5 bits long. The MCU then sends this reading over SPI to the MAX10

FPGA on the Arrow MAX1000 PCB. The FPGA then takes this information and time multiplexes

rows of LEDs to display the two digits on an 8-by-8 LED matrix. Calibration was done by taking

various measurements with a store-bought breathalyzer. This was successfully implemented,

and the system as a whole behaves as desired.

Introduction:

The final project of E155 directed students to use the principles taught in the class to

design and build a complex system that implements novel hardware not previously used in the

labs. A volatile organic compound (VOC) sensor’s resistance changes based on the level of a

compound it detects in the air around it. Certain ones can detect ethanol, which appears in the

breath of a person who has consumed alcohol. Alcohol consumption can have serious

consequences, especially when it comes to the operation of motor vehicles, which is why laws

are in place based on the blood alcohol (BAC) of a person. Because of this, using a sensor to

display the BAC of the user is highly valuable, as it can prevent a person from participating in

dangerous activities or getting arrested. This was the motivation behind this project.

The block diagram shown below in Figure 1 shows an overview of the entire

breathalyzer system.

Figure 1: Overall System Block Diagram

As seen in the block diagram, the MCU is taking in the input from the VOC sensor and sending

converted data to the FPGA, which runs the 8 by 8 LED matrix. The other human input is a

button that tells the MCU to take a measurement.

VOC Sensor and Circuit:

The VOC sensor used in this project is the MiCS 5524. This sensor is capable of

detecting concentrations of up to 500 ppm of ethanol. The PCB that includes the sensor takes in

a 5V and GND input from the MCU, and outputs a voltage that increases with as the

concentration of alcohol it detects increases. However, due to reasons that will be explained

later, the ADC can only read values between 0V and 3.3V, while the output of the PCB can

reach 5V. To combat this, the ADC will read the voltage in between two identical resistors linking

the output to ground, which makes the maximum readable voltage 2.5V, which the ADC is able

to read.

Figure 2: VOC to MCU Connections

MCU ADC Usage:

The ADC on the MCU converts the analog voltage output of the VOC sensor circuit,

which is connected to pin A0 on the MCU, into a 12 bit number, which is the highest resolution

possible for this unit. The 12 bit number is output by the ADC according to the Equation 1, with

analog voltage on pin A0 as an input:

𝑂𝑈𝑇 = 𝐼𝑁 · ((𝑉
𝑅𝐸𝐹+

− 𝑉
𝑅𝐸𝐹−

)/2𝑁) (1)

In this case, is 3.3V, is 0V, and N is 12, meaning that the ADC outputs a number𝑉
𝑅𝐸𝐹+

𝑉
𝑅𝐸𝐹−

from 0 to 4095.

The ADC has the option of aligning the number to the left or the right, and the

right-aligned option was chosen because when storing the number in a variable, the code will

convert the binary number to a number in decimal format. Right shifting allows this number to be

read correctly, rather than being shifted and multiplied by a certain amount.

The ADC has 16 channels to sample the voltages of, and any sequence of channels can

be sampled in any order. For this project, the only channel used was ADC_IN0, which

connected to pin A0 when it was set as an analog pin. The ADC also has single conversion

mode, continuous conversion mode, and scan mode. Single conversion mode was used for this

project, as it was desired to take only one measurement at the push of a button, shown in

Figure 2. There are also sequence registers that keep track of the amount of channels to

sample and what order to do so in. These registers were set to 1 channel and ADC_IN0,

respectively.

Transformation to BAC on MCU:

As stated in a previous section, the maximum ethanol concentration that the BAC can

detect is 500ppm, which roughly translates to 0.1974% BAC. To represent this fact, the code on

the MCU converts the ADC reading to a 5 bit binary unsigned integer between 0 and 19. A

calibration curve was found by blowing into a store-bought breathalyzer and then reading the

voltage on pin A0 with an oscilloscope. Equation 2 below shows the polynomial curve found to

be the calibration curve, where x is the BAC in hundreths of a percentage point.

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 44. 7352 · 𝑥2 −. 5527 · 𝑥 +. 207 (2)

The code takes into account what ADC outputs these voltages translate to, and properly maps

them onto a binary unsigned integer between 0 and 19. This value is then stored onto a

variable, which is now ready to be sent to the FPGA via SPI.

MCU SPI Communication:

The MCU communicates the 5-bit value calculated during the prior step to the FPGA.

This value is placed into the SPI data register, which is set to 8 bits and most significant bit first,

and is shifted out on the rising edge of the SPI clock. The MCU acts as the SPI master while the

FPGA acts as the client, except that it does not send data back to the MCU. The clock speed is

set by a prescaler in the RCC and the SPI prescaler. The prescaler of the RCC was 16, and the

SPI prescaler was set to 256. This caused the SPI clock to have a frequency of 10253 Hz. This

low frequency was chosen so that the FPGA was able to sample the incoming bits while also

running slowly enough that digits on the LED matrix did not bleed together. Figure 3 below

shows the connections between the FPGA and MCU.

Figure 3: MCU to FPGA SPI Connections

MCU Algorithm:

After initializing and enabling the clock and necessary peripherals, the code enters a

while loop and then waits for a button press. Once the button is pressed, pin A1 is driven high

which tells the ADC to take a single measurement of the voltage output of the VOC circuit. It

stores this measurement in a variable, and then puts that value through the voltage to BAC

conversion mentioned in a previous section. A timer on the MCU activates to count to 1 second,

which prevents any debouncing issues from causing the ADC to read multiple measurements

with one button press. The MCU then sends the 5-bit value over SPI, which ends up being an

8-bit value with 3 leading zeroes. The MCU then waits for the FPGA to respond with a high

signal that goes to pin A2, indicating that it has received and implemented the 5-bit number in

the way that will be described later in the FPGA section of the report.

FPGA SPI Reception:

The FPGA hardware was programmed to be able to receive the 8-bit serially transmitted

data from the MCU by causing it to act as a shift register. Essentially, 8 parallel bits were

designated, the 5 least significant of which would be the input to the FPGA LED Multiplexing

system that will be described in the next section of the report. Using a flop, at every positive

edge of the SCK input from the microcontroller, the value on the H4 pin at that time will be

shifted in as the least significant bit. This happens 8 times per transmission, so that the 5-bit

number will be used as the input to the multiplexing module. Using a counter, the FPGA’s clock

runs at 20507 Hertz, twice as fast as SCK. This is to ensure that each of the shifts are detected

and that, as mentioned previously, the digits on the LED matrix don’t bleed together.

FPGA LED Multiplexing:

The FPGA takes in the 5 least significant bits of the SPI data from the MCU, decodes the

data to a percentage (0.00, 0.01, 0.02 . . . 0.20) and displays the data on an LED matrix via

multiplexing. A seven state FSM is used to determine which row of the LED is turned on for

multiplexing. Combinational logic is used to determine which LEDs to assert based on which

row is powered and which number needs to be displayed. Transistors are used to provide power

to each row of the LED matrix.

Figure 4: FPGA Block Diagram Without SPI

Results:

The system works as intended. The voltages read on the oscilloscope match the ADC

and BAC readings that are read in the debugger in VS Code. The system reacts to the presence

of alcohol in many forms. It reacts to the presence of vodka on one’s breath, the presence of

mouthwash containing alcohol on one’s breath, and even the presence of mouthwash on a

cotton ball held closely to the sensor. This means that the breathalyzer can be demonstrated in

a professional setting while also adhering to COVID regulations, which is what was desired from

the system when it was first thought of.

References:

lady ada. Adafruit. https://learn.adafruit.com/adafruit-mics5524-gas-sensor-breakout July 2016

http://www.mecinca.net/ALCOHOLIMETROS_Alcosim/BAC%20BrAC%20conversion%20table[1

].pdf

https://senseair.com/knowledge/information-and-education/gases/c-h-oh-ethanol/

https://learn.adafruit.com/adafruit-mics5524-gas-sensor-breakout
http://www.mecinca.net/ALCOHOLIMETROS_Alcosim/BAC%20BrAC%20conversion%20table[1].pdf
http://www.mecinca.net/ALCOHOLIMETROS_Alcosim/BAC%20BrAC%20conversion%20table[1].pdf

Bill of Materials:

Material Quantity Cost Total Cost

STM32F401RE MCU 1 0 0

MAX1000 1 0 0

MiCS 5524 Sensor +
PCB + Shipping

1 $62.00 $62.00

2N3906 Transistor 7 0 0

2200 Ohm Resistor 3 0 0

390 Ohm Resistor 8 0 0

Push Button 1 0 0

8x8 LED Matrix 1 0 0

2000 Ohm Resistor 7 0 0

2700 Ohm Resistor 4 0 0

Total $62.00

Appendix A: Breadboard Schematics

MCU and VOC Sensor

FPGA and LED

Appendix B: MCU Code

final_project.c

#include "STM32F401RE_GPIO.h"
#include "STM32F401RE_FLASH.h"
#include "STM32F401RE_RCC.h"
#include "STM32F401RE_ADC.h"
#include "STM32F401RE_SPI.h"
#include "STM32F401RE_TIM.h"
#include <string.h> // for strstr()
#include <stdint.h> // for integer types (i.e., uint32_t)
#include <stdio.h> // for sprintf()

uint8_t ADCto5bits(uint16_t adc){
uint8_t a;
if (adc > (.207*4096/(3.3*2))){

if(adc > (.209*4096/(3.3*2))){
if(adc > (.2138*4096/(3.3*2))){

if(adc > (.2307*4096/(3.3*2))){
if (adc > (.2565*4096/(3.3*2))){

if(adc > (.2912*4096/(3.3*2))){
if(adc > (.3349*4096/(3.3*2))){

if(adc > (.3875*4096/(3.3*2))){
if(adc > (.4491*4096/(3.3*2))){

if(adc > (.5196*4096/(3.3*2))){
if(adc > (.5991*4096/(3.3*2))){

if(adc > (.6875*4096/(3.3*2))){
if(adc > (.7849*4096/(3.3*2))){

if(adc > (.8912*4096/(3.3*2))){
if(adc > (1.0064*4096/(3.3*2))){

if(adc > (1.1306*4096/(3.3*2))){
if(adc > (1.2638*4096/(3.3*2))){

if(adc > (1.4059*4096/(3.3*2))){
if(adc > (1.5569*4096/(3.3*2))){

a = 19;}
else {a = 18;}

}
else {a = 17;}

}
else {a = 16;}

}
else {a = 15;}

}
else {a = 14;}

}
else {a = 13;}

}
else {a = 12;}

}
else {a = 11;}

}
else {a = 10;}

}
else {a = 9;}

}
else {a = 8;}

}
else {a = 7;}

}
else {a = 6;}

}
else {a = 5;}

}
else {a = 4;}

}
else {a = 3;}

}
else {a = 2;}

}
else {a = 1;}

}
else {a = 0;}
return a;

}

int main(void) {
// Configure the flash and then set clock to 84 MHz from PLL
configureFlash();
configureClock();
RCC->APB2ENR.ADC1EN = 1;
// Turn on GPIOA
RCC->AHB1ENR.GPIOAEN = 1;

//Enable timer
RCC->CFGR.HPRE = 0b0001;
RCC->APB2ENR.TIM11EN = 1;

// Set PA0 as an input for the ADC, another pin as input for reading and
another for signaling ready

pinMode(GPIOA, 0, GPIO_ANALOG);
pinMode(GPIOA, 1, GPIO_INPUT);
pinMode(GPIOA, 4, GPIO_INPUT);

durationTimer();
// Set MISO, MOSI, SCK, and CE
spiInit(0b111, 0, 0);

// Initialize the ADC
ADCinit();
//digitalWrite(GPIOB, 6, 1);
uint16_t b;
//b = measure();
uint8_t a;
//a = ADCto5bits(b);
//b = measure();
//a = ADCto5bits(b);
//SPI Stuff
//spiSendReceive(a);
while(1) {

while(digitalRead(GPIOA, 1)!= 1); //wait for button push
TIMERD->ARR.ARR = (1000 * 2)-1; // Wait for amount of time to pass
TIMERD->CCR1.CCR1 = (1000 * 2);
TIMERD->EGR.UG = 1;
while(TIMERD->SR.CC1IF == 0){}
TIMERD->SR.CC1IF = 0;
durationTimer(); // Reset Timer
b = measure(); // Measure with ADC
a = ADCto5bits(b); //Convert measurement
//SPI Stuff
spiSendReceive(a); //Send 5 bit number to FPGA
while(digitalRead(GPIOA, 4)!= 1); // Wait for done signal from FPGA

}
return b+a;

Appendix C: SystemVerilog Code

Date: December 06, 2021 Breathylizer.sv Project: Breathylizer

Page 1 of 7 Revision: Breathylizer

1 //11/22/2021
2 //George Wang
3 //gewang@g.hmc.edu
4 //module determining the row we are in
5 module Breathylizer
6 (input logic clk,
7 input logic load,
8 input logic sck,
9 input logic reset,

10 input logic sdi, //switches
11 output logic [6:0] rowTrans, //transistors
12 output logic [7:0] LEDLogic,
13 //output logic [7:0] LEDLogic2,
14 output logic done);
15
16 logic [4:0] dataIn;
17 logic [6:0] row;
18 logic High;
19
20 spi SPI(sck, sdi, dataIn);
21
22 clockMulti CM0(clk, High);
23
24 LEDFSM FSM0(High, reset, load, row, done);
25
26 numberWrite Write0(row, dataIn, LEDLogic);
27
28 //transistor logic
29 assign rowTrans[0] = ~row[0];
30 assign rowTrans[1] = ~row[1];
31 assign rowTrans[2] = ~row[2];
32 assign rowTrans[3] = ~row[3];
33 assign rowTrans[4] = ~row[4];
34 assign rowTrans[5] = ~row[5];
35 assign rowTrans[6] = ~row[6];
36
37 endmodule
38
39
40 module LEDFSM
41 (input logic clk,
42 input logic reset,
43 input logic load,
44 output logic [6:0] row,
45 output logic done);
46
47 typedef enum logic [4:0] {R0, R1, R2, R3, R4, R5, R6,R7,R8} statetype; //we wont use

the top LED matrix
48 statetype state, nextState;
49
50 //state register
51 always_ff @(posedge clk, posedge reset)
52 if (reset) state <= R0;
53 else state <= nextState;
54
55 //next state logic
56 //5 state FSM. 4 record row information
57 always_comb
58 case(state)
59 R0: if(load) nextState <= R1;
60 else nextState <= R0;
61 R1: if(load) nextState <= R1;
62 else nextState <= R2;
63 R2: if(load) nextState <= R1;
64 else nextState <= R3;
65 R3: if(load) nextState <= R1;
66 else nextState <= R4;
67 R4: if(load) nextState <= R1;
68 else nextState <= R5;
69 R5: if(load) nextState <= R1;
70 else nextState <= R6;
71 R6: if(load) nextState <= R1;
72 else nextState <= R7;
73 R7: if(load) nextState <= R1;
74 else nextState <= R8;
75 R8: if(load) nextState <= R1;

Date: December 06, 2021 Breathylizer.sv Project: Breathylizer

Page 2 of 7 Revision: Breathylizer

76 else nextState <= R2;
77 default: nextState <= R0;
78 endcase
79
80 assign row[0] = (state == R2);
81 assign row[1] = (state == R3);
82 assign row[2] = (state == R4);
83 assign row[3] = (state == R5);
84 assign row[4] = (state == R6);
85 assign row[5] = (state == R7);
86 assign row[6] = (state == R8);
87
88 assign done = ~(state == R0 | state == R1);
89 endmodule
90
91
92
93
94 module numberWrite
95 (input logic [6:0] row,
96 input logic [4:0] dataIn, //switches
97 output logic [7:0] LEDLogic);
98
99 logic [7:0] zero0, zero1, zero2, zero3, zero4, zero5, zero6;

100 logic [7:0] one0, one1, one2, one3, one4, one5, one6;
101 logic [7:0] two0, two1, two2, two3, two4, two5, two6;
102 logic [7:0] three0, three1, three2, three3, three4, three5, three6;
103 logic [7:0] four0, four1, four2, four3, four4, four5, four6;
104 logic [7:0] five0, five1, five2, five3, five4, five5, five6;
105 logic [7:0] six0, six1, six2, six3, six4, six5, six6;
106 logic [7:0] seven0, seven1, seven2, seven3, seven4, seven5, seven6;
107 logic [7:0] eight0, eight1, eight2, eight3, eight4, eight5, eight6;
108 logic [7:0] nine0, nine1, nine2, nine3, nine4, nine5, nine6;
109 logic [7:0] ten0, ten1, ten2, ten3, ten4, ten5, ten6;
110 logic [7:0] onet0, onet1, onet2, onet3, onet4, onet5, onet6;
111 logic [7:0] twot0, twot1, twot2, twot3, twot4, twot5, twot6;
112 logic [7:0] threet0, threet1, threet2, threet3, threet4, threet5, threet6;
113 logic [7:0] fourt0, fourt1, fourt2, fourt3, fourt4, fourt5, fourt6;
114 logic [7:0] fivet0, fivet1, fivet2, fivet3, fivet4, fivet5, fivet6;
115 logic [7:0] sixt0, sixt1, sixt2, sixt3, sixt4, sixt5, sixt6;
116 logic [7:0] sevent0, sevent1, sevent2, sevent3, sevent4, sevent5, sevent6;
117 logic [7:0] eightt0, eightt1, eightt2, eightt3, eightt4, eightt5, eightt6;
118 logic [7:0] ninet0, ninet1, ninet2, ninet3, ninet4, ninet5, ninet6;
119
120
121 assign zero0 = 8'b00000000;
122 assign zero1 = 8'b01100110;
123 assign zero2 = 8'b01100110;
124 assign zero3 = 8'b01100110;
125 assign zero4 = 8'b01100110;
126 assign zero5 = 8'b01100110;
127 assign zero6 = 8'b00000000;
128
129 assign one0 = 8'b00000111;
130 assign one1 = 8'b01100111;
131 assign one2 = 8'b01100111;
132 assign one3 = 8'b01100111;
133 assign one4 = 8'b01100111;
134 assign one5 = 8'b01100111;
135 assign one6 = 8'b00000111;
136
137 assign two0 = 8'b00000000;
138 assign two1 = 8'b01101110;
139 assign two2 = 8'b01101110;
140 assign two3 = 8'b01100000;
141 assign two4 = 8'b01100111;
142 assign two5 = 8'b01100111;
143 assign two6 = 8'b00000000;
144
145 assign three0 = 8'b00000000;
146 assign three1 = 8'b01101110;
147 assign three2 = 8'b01101110;
148 assign three3 = 8'b01100000;
149 assign three4 = 8'b01101110;
150 assign three5 = 8'b01101110;
151 assign three6 = 8'b00000000;

Date: December 06, 2021 Breathylizer.sv Project: Breathylizer

Page 3 of 7 Revision: Breathylizer

152
153 assign four0 = 8'b00000110;
154 assign four1 = 8'b01100110;
155 assign four2 = 8'b01100110;
156 assign four3 = 8'b01100000;
157 assign four4 = 8'b01101110;
158 assign four5 = 8'b01101110;
159 assign four6 = 8'b00001110;
160
161 assign five0 = 8'b00000000;
162 assign five1 = 8'b01100111;
163 assign five2 = 8'b01100111;
164 assign five3 = 8'b01100000;
165 assign five4 = 8'b01101110;
166 assign five5 = 8'b01101110;
167 assign five6 = 8'b00000000;
168
169 assign six0 = 8'b00000000;
170 assign six1 = 8'b01100111;
171 assign six2 = 8'b01100111;
172 assign six3 = 8'b01100000;
173 assign six4 = 8'b01100110;
174 assign six5 = 8'b01100110;
175 assign six6 = 8'b00000000;
176
177 assign seven0 = 8'b00000000;
178 assign seven1 = 8'b01101110;
179 assign seven2 = 8'b01101110;
180 assign seven3 = 8'b01101110;
181 assign seven4 = 8'b01101110;
182 assign seven5 = 8'b01101110;
183 assign seven6 = 8'b00001110;
184
185 assign eight0 = 8'b00000000;
186 assign eight1 = 8'b01100110;
187 assign eight2 = 8'b01100110;
188 assign eight3 = 8'b01100000;
189 assign eight4 = 8'b01100110;
190 assign eight5 = 8'b01100110;
191 assign eight6 = 8'b00000000;
192
193 assign nine0 = 8'b00000000;
194 assign nine1 = 8'b01100110;
195 assign nine2 = 8'b01100110;
196 assign nine3 = 8'b01100000;
197 assign nine4 = 8'b01101110;
198 assign nine5 = 8'b01101110;
199 assign nine6 = 8'b00001110;
200
201 assign ten0 = 8'b01110000;
202 assign ten1 = 8'b01110110;
203 assign ten2 = 8'b01110110;
204 assign ten3 = 8'b01110110;
205 assign ten4 = 8'b01110110;
206 assign ten5 = 8'b01110110;
207 assign ten6 = 8'b01110000;
208
209 assign onet0 = 8'b01110111;
210 assign onet1 = 8'b01110111;
211 assign onet2 = 8'b01110111;
212 assign onet3 = 8'b01110111;
213 assign onet4 = 8'b01110111;
214 assign onet5 = 8'b01110111;
215 assign onet6 = 8'b01110111;
216
217 assign twot0 = 8'b01110000;
218 assign twot1 = 8'b01111110;
219 assign twot2 = 8'b01111110;
220 assign twot3 = 8'b01110000;
221 assign twot4 = 8'b01110111;
222 assign twot5 = 8'b01110111;
223 assign twot6 = 8'b01110000;
224
225 assign threet0 = 8'b01110000;
226 assign threet1 = 8'b01111110;
227 assign threet2 = 8'b01111110;

Date: December 06, 2021 Breathylizer.sv Project: Breathylizer

Page 4 of 7 Revision: Breathylizer

228 assign threet3 = 8'b01110000;
229 assign threet4 = 8'b01111110;
230 assign threet5 = 8'b01111110;
231 assign threet6 = 8'b01110000;
232
233 assign fourt0 = 8'b01110110;
234 assign fourt1 = 8'b01110110;
235 assign fourt2 = 8'b01110110;
236 assign fourt3 = 8'b01110000;
237 assign fourt4 = 8'b01111110;
238 assign fourt5 = 8'b01111110;
239 assign fourt6 = 8'b01111110;
240
241 assign fivet0 = 8'b01110000;
242 assign fivet1 = 8'b01110111;
243 assign fivet2 = 8'b01110111;
244 assign fivet3 = 8'b01110000;
245 assign fivet4 = 8'b01111110;
246 assign fivet5 = 8'b01111110;
247 assign fivet6 = 8'b01110000;
248
249 assign sixt0 = 8'b01110000;
250 assign sixt1 = 8'b01110111;
251 assign sixt2 = 8'b01110111;
252 assign sixt3 = 8'b01110000;
253 assign sixt4 = 8'b01110110;
254 assign sixt5 = 8'b01110110;
255 assign sixt6 = 8'b01110000;
256
257 assign sevent0 = 8'b01110000;
258 assign sevent1 = 8'b01111110;
259 assign sevent2 = 8'b01111110;
260 assign sevent3 = 8'b01111110;
261 assign sevent4 = 8'b01111110;
262 assign sevent5 = 8'b01111110;
263 assign sevent6 = 8'b01111110;
264
265 assign eightt0 = 8'b01110000;
266 assign eightt1 = 8'b01110110;
267 assign eightt2 = 8'b01110110;
268 assign eightt3 = 8'b01110000;
269 assign eightt4 = 8'b01110110;
270 assign eightt5 = 8'b01110110;
271 assign eightt6 = 8'b01110000;
272
273 assign ninet0 = 8'b01110000;
274 assign ninet1 = 8'b01110110;
275 assign ninet2 = 8'b01110110;
276 assign ninet3 = 8'b01110000;
277 assign ninet4 = 8'b01111110;
278 assign ninet5 = 8'b01111110;
279 assign ninet6 = 8'b01111110;
280
281
282
283 always_comb
284 case(row)
285 7'b0000001: if (dataIn == 5'b00000) LEDLogic = zero0; //zero0
286 else if (dataIn == 5'b00001) LEDLogic = one0; //one0
287 else if (dataIn == 5'b00010) LEDLogic = two0; //two0
288 else if (dataIn == 5'b00011) LEDLogic = three0; //three0
289 else if (dataIn == 5'b00100) LEDLogic = four0; //four0
290 else if (dataIn == 5'b00101) LEDLogic = five0; //five0
291 else if (dataIn == 5'b00110) LEDLogic = six0; //six0
292 else if (dataIn == 5'b00111) LEDLogic = seven0; //seven0
293 else if (dataIn == 5'b01000) LEDLogic = eight0; //eight0
294 else if (dataIn == 5'b01001) LEDLogic = nine0; //nine0
295
296 else if (dataIn == 5'b01010) LEDLogic = ten0; //10
297 else if (dataIn == 5'b01011) LEDLogic = onet0; //11
298 else if (dataIn == 5'b01100) LEDLogic = twot0; //12
299 else if (dataIn == 5'b01101) LEDLogic = threet0; //13
300 else if (dataIn == 5'b01110) LEDLogic = fourt0; //14
301 else if (dataIn == 5'b01111) LEDLogic = fivet0; //15
302 else if (dataIn == 5'b10000) LEDLogic = sixt0; //16
303 else if (dataIn == 5'b10001) LEDLogic = sevent0; //17

Date: December 06, 2021 Breathylizer.sv Project: Breathylizer

Page 5 of 7 Revision: Breathylizer

304 else if (dataIn == 5'b10010) LEDLogic = eightt0; //18
305 else if (dataIn == 5'b10011) LEDLogic = ninet0;

//19
306 else LEDLogic = 8'b11111111;
307
308 7'b0000010: if (dataIn == 5'b00000) LEDLogic = zero1; //zero0
309 else if (dataIn == 5'b00001) LEDLogic = one1; //one0
310 else if (dataIn == 5'b00010) LEDLogic = two1; //two0
311 else if (dataIn == 5'b00011) LEDLogic = three1; //three0
312 else if (dataIn == 5'b00100) LEDLogic = four1; //four0
313 else if (dataIn == 5'b00101) LEDLogic = five1; //five0
314 else if (dataIn == 5'b00110) LEDLogic = six1; //six0
315 else if (dataIn == 5'b00111) LEDLogic = seven1; //seven0
316 else if (dataIn == 5'b01000) LEDLogic = eight1; //eight0
317 else if (dataIn == 5'b01001) LEDLogic = nine1; //nine0
318
319 else if (dataIn == 5'b01010) LEDLogic = ten1; //10
320 else if (dataIn == 5'b01011) LEDLogic = onet1; //11
321 else if (dataIn == 5'b01100) LEDLogic = twot1; //12
322 else if (dataIn == 5'b01101) LEDLogic = threet1; //13
323 else if (dataIn == 5'b01110) LEDLogic = fourt1; //14
324 else if (dataIn == 5'b01111) LEDLogic = fivet1; //15
325 else if (dataIn == 5'b10000) LEDLogic = sixt1; //16
326 else if (dataIn == 5'b10001) LEDLogic = sevent1; //17
327 else if (dataIn == 5'b10010) LEDLogic = eightt1; //18
328 else if (dataIn == 5'b10011) LEDLogic = ninet1; //19
329 else LEDLogic = 8'b11111111;
330
331
332 7'b0000100: if (dataIn == 5'b00000) LEDLogic = zero2; //zero0
333 else if (dataIn == 5'b00001) LEDLogic = one2; //one0
334 else if (dataIn == 5'b00010) LEDLogic = two2; //two0
335 else if (dataIn == 5'b00011) LEDLogic = three2; //three0
336 else if (dataIn == 5'b00100) LEDLogic = four2; //four0
337 else if (dataIn == 5'b00101) LEDLogic = five2; //five0
338 else if (dataIn == 5'b00110) LEDLogic = six2; //six0
339 else if (dataIn == 5'b00111) LEDLogic = seven2; //seven0
340 else if (dataIn == 5'b01000) LEDLogic = eight2; //eight0
341 else if (dataIn == 5'b01001) LEDLogic = nine2; //nine0
342
343 else if (dataIn == 5'b01010) LEDLogic = ten2; //10
344 else if (dataIn == 5'b01011) LEDLogic = onet2; //11
345 else if (dataIn == 5'b01100) LEDLogic = twot2; //12
346 else if (dataIn == 5'b01101) LEDLogic = threet2; //13
347 else if (dataIn == 5'b01110) LEDLogic = fourt2; //14
348 else if (dataIn == 5'b01111) LEDLogic = fivet2; //15
349 else if (dataIn == 5'b10000) LEDLogic = sixt2; //16
350 else if (dataIn == 5'b10001) LEDLogic = sevent2; //17
351 else if (dataIn == 5'b10010) LEDLogic = eightt2; //18
352 else if (dataIn == 5'b10011) LEDLogic = ninet2;

//19
353 else LEDLogic = 8'b11111111;
354
355
356 7'b0001000: if (dataIn == 5'b00000) LEDLogic = zero3; //zero0
357 else if (dataIn == 5'b00001) LEDLogic = one3; //one0
358 else if (dataIn == 5'b00010) LEDLogic = two3; //two0
359 else if (dataIn == 5'b00011) LEDLogic = three3; //three0
360 else if (dataIn == 5'b00100) LEDLogic = four3; //four0
361 else if (dataIn == 5'b00101) LEDLogic = five3; //five0
362 else if (dataIn == 5'b00110) LEDLogic = six3; //six0
363 else if (dataIn == 5'b00111) LEDLogic = seven3; //seven0
364 else if (dataIn == 5'b01000) LEDLogic = eight3; //eight0
365 else if (dataIn == 5'b01001) LEDLogic = nine3; //nine0
366
367 else if (dataIn == 5'b01010) LEDLogic = ten3; //10
368 else if (dataIn == 5'b01011) LEDLogic = onet3; //11
369 else if (dataIn == 5'b01100) LEDLogic = twot3; //12
370 else if (dataIn == 5'b01101) LEDLogic = threet3; //13
371 else if (dataIn == 5'b01110) LEDLogic = fourt3; //14
372 else if (dataIn == 5'b01111) LEDLogic = fivet3; //15
373 else if (dataIn == 5'b10000) LEDLogic = sixt3; //16
374 else if (dataIn == 5'b10001) LEDLogic = sevent3; //17
375 else if (dataIn == 5'b10010) LEDLogic = eightt3; //18
376 else if (dataIn == 5'b10011) LEDLogic = ninet3; //19
377 else LEDLogic = 8'b11111111;

Date: December 06, 2021 Breathylizer.sv Project: Breathylizer

Page 6 of 7 Revision: Breathylizer

378
379
380 7'b0010000: if (dataIn == 5'b00000) LEDLogic = zero4; //zero0
381 else if (dataIn == 5'b00001) LEDLogic = one4; //one0
382 else if (dataIn == 5'b00010) LEDLogic = two4; //two0
383 else if (dataIn == 5'b00011) LEDLogic = three4; //three0
384 else if (dataIn == 5'b00100) LEDLogic = four4; //four0
385 else if (dataIn == 5'b00101) LEDLogic = five4; //five0
386 else if (dataIn == 5'b00110) LEDLogic = six4; //six0
387 else if (dataIn == 5'b00111) LEDLogic = seven4; //seven0
388 else if (dataIn == 5'b01000) LEDLogic = eight4; //eight0
389 else if (dataIn == 5'b01001) LEDLogic = nine4; //nine0
390
391 else if (dataIn == 5'b01010) LEDLogic = ten4; //10
392 else if (dataIn == 5'b01011) LEDLogic = onet4; //11
393 else if (dataIn == 5'b01100) LEDLogic = twot4; //12
394 else if (dataIn == 5'b01101) LEDLogic = threet4; //13
395 else if (dataIn == 5'b01110) LEDLogic = fourt4; //14
396 else if (dataIn == 5'b01111) LEDLogic = fivet4; //15
397 else if (dataIn == 5'b10000) LEDLogic = sixt4; //16
398 else if (dataIn == 5'b10001) LEDLogic = sevent4; //17
399 else if (dataIn == 5'b10010) LEDLogic = eightt4; //18
400 else if (dataIn == 5'b10011) LEDLogic = ninet4;

//19
401 else LEDLogic = 8'b11111111;
402
403
404 7'b0100000: if (dataIn == 5'b00000) LEDLogic = zero5; //zero0
405 else if (dataIn == 5'b00001) LEDLogic = one5; //one0
406 else if (dataIn == 5'b00010) LEDLogic = two5; //two0
407 else if (dataIn == 5'b00011) LEDLogic = three5; //three0
408 else if (dataIn == 5'b00100) LEDLogic = four5; //four0
409 else if (dataIn == 5'b00101) LEDLogic = five5; //five0
410 else if (dataIn == 5'b00110) LEDLogic = six5; //six0
411 else if (dataIn == 5'b00111) LEDLogic = seven5; //seven0
412 else if (dataIn == 5'b01000) LEDLogic = eight5; //eight0
413 else if (dataIn == 5'b01001) LEDLogic = nine5; //nine0
414
415 else if (dataIn == 5'b01010) LEDLogic = ten5; //10
416 else if (dataIn == 5'b01011) LEDLogic = onet5; //11
417 else if (dataIn == 5'b01100) LEDLogic = twot5; //12
418 else if (dataIn == 5'b01101) LEDLogic = threet5; //13
419 else if (dataIn == 5'b01110) LEDLogic = fourt5; //14
420 else if (dataIn == 5'b01111) LEDLogic = fivet5; //15
421 else if (dataIn == 5'b10000) LEDLogic = sixt5; //16
422 else if (dataIn == 5'b10001) LEDLogic = sevent5; //17
423 else if (dataIn == 5'b10010) LEDLogic = eightt5; //18
424 else if (dataIn == 5'b10011) LEDLogic = ninet5;

//19
425 else LEDLogic = 8'b11111111;
426
427
428 7'b1000000: if (dataIn == 5'b00000) LEDLogic = zero6; //zero0
429 else if (dataIn == 5'b00001) LEDLogic = one6; //one0
430 else if (dataIn == 5'b00010) LEDLogic = two6; //two0
431 else if (dataIn == 5'b00011) LEDLogic = three6;
432 else if (dataIn == 5'b00100) LEDLogic = four6;
433 else if (dataIn == 5'b00101) LEDLogic = five6;
434 else if (dataIn == 5'b00110) LEDLogic = six6;
435 else if (dataIn == 5'b00111) LEDLogic = seven6;
436 else if (dataIn == 5'b01000) LEDLogic = eight6;
437 else if (dataIn == 5'b01001) LEDLogic = nine6;
438
439 else if (dataIn == 5'b01010) LEDLogic = ten6; //10
440 else if (dataIn == 5'b01011) LEDLogic = onet6; //11
441 else if (dataIn == 5'b01100) LEDLogic = twot6; //12
442 else if (dataIn == 5'b01101) LEDLogic = threet6; //13
443 else if (dataIn == 5'b01110) LEDLogic = fourt6; //14
444 else if (dataIn == 5'b01111) LEDLogic = fivet6; //15
445 else if (dataIn == 5'b10000) LEDLogic = sixt6; //16
446 else if (dataIn == 5'b10001) LEDLogic = sevent6; //17
447 else if (dataIn == 5'b10010) LEDLogic = eightt6; //18
448 else if (dataIn == 5'b10011) LEDLogic = ninet6;

//19
449 else LEDLogic = 8'b11111111;
450

Date: December 06, 2021 Breathylizer.sv Project: Breathylizer

Page 7 of 7 Revision: Breathylizer

451
452 default: LEDLogic = 8'b11111111;
453 endcase
454 endmodule
455
456
457
458
459 //9/8/21
460 //George Wang
461 //gewang@g.hmc.edu
462 //module for generating clock signal at around 2.4Hz
463 //Referenced Better Verilog Counter Idiom
464 module clockMulti
465 (input logic clk,
466 output logic High);
467
468 logic [15-1:0] LEDHigh;
469
470 always_ff @(posedge clk)
471 LEDHigh <= LEDHigh + 56;
472 assign High = LEDHigh[14];
473
474 endmodule
475
476
477 module spi(input logic sck,
478 input logic sdi,
479 output logic [4:0] ADC);
480
481 logic [7:0] ADC8;
482 always_ff @(posedge sck)
483 ADC8 = {ADC8[6:0],sdi};
484
485 assign ADC = ADC8[4:0];
486
487
488 endmodule
489

