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Abstract

Our team attempted to create a “Musical Hat”. This hat had a strip of 60 addressable LEDs fixed to the
top. A microphone on the hat would take in audio data from the environment and the LED’s would flash
according to the audio’s spectrum data as determined by a 32 point fast fourier transform (FFT). While we
were unable to represent the spectrum data on the LED’s correctly, we were successfully able to: convert
analog audio data to digital data using an analog to digital converter (ADC), establish simultaneous serial
peripheral interface (SPI) communication between the LED strip and FPGA, and develop a functioning 32
point FFT implementation using an FPGA.

1 Introduction

The end goal of this project was to be able to represent in real time the audio spectrum data present in the
environment on a strip of 60 RGB LEDs. This would be done through sending sampled audio data to the



MAX1000 FPGA that contained an implementation of the 32 point FFT where the spectrum data would
be calculated. Once the calculations were completed the FPGA would send the spectrum data back to the
MCU. After receiving new spectrum data from the FPGA, the MCU would flash the LEDs on the hat
depending on the frequencies present in the spectrum data. The dataflow and specifications for the project
are detailed below:
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Analog audio data is captured using the MAX4466 Electret Microphone Amplifier

32 samples of audio data from the environment is sampled at a rate of 8000Hz using the Nucleo
F401RE’s onboard ADC. Signal duration of .125 ms.

Sampled audio data is sent to the MAX1000 FPGA using SPI communication

MAX1000 FPGA calculates the 32 point FFT on the sampled audio data

MAX1000 FPGA sends calculated spectrum data back to the MCU over SPI communication
Nucleo F401RE analyzes spectrum data and determines how the brightness of each LED on the
hat needs to change.

Nucleo F401RE sends lighting data to the Addressable APA102 LED Strip over SPI
communication.

Addressable APA102 LED Strip changes brightness of each LED according to lighting data.
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Fig 1: Project Dataflow Block Diagram

Ultimately we were unable to flash the lights on the LED strip according to the spectrum data calculated.
This was due to a communication failure when sending spectrum data back to the Nucleo F401RE (5).
The following is a detailed report of the results we were able to achieve as well as a deeper discussion of
the system failure that we encountered.



2 New Hardware

To make the musical hat, we used two new pieces of hardware: a microphone to receive analog
audio data, and an individually addressable strip of 60 LEDs.

2.1 Electret Microphone Amplifier MAX4466

Fig 2: Image of microphone amplifier board
The microphone we used is the Electret Microphone Amplifier MAX4466. It contains a
20-20KHz electret microphone soldered to a board containing a Maxim MAX4466 op-amp with
adjustable gain. The mic has three ports: VCC, GND, and OUT. We powered the mic by
connecting VCC and GND to the 3.3V supply and GND on the Nucleo-64, respectively.

To read data from the mic, we connected the OUT port to pin PA1 on the MCU, which read in
the analog data to the board’s ADC. The MAX4466 continuously outputs audio waveform data
in the form of voltage corresponding to air pressure. The output voltage values generally range
from 1 to 3V depending on noise level. With typical background noise in the lab, the output
ranges from 2000 to 2050 mV.

2.2 Addressable APA102 LED Strip

We used a one meter strip of 60 APA102 LEDs to flash with music. The strip has four input pins:
Vee, GND, CLK, and DATA. Vcc requires 5V to power the LED strip. We supplied power to the
strip with a USB to pinout converter connected to a 5V portable charger. We connected the 5V
pin to Vcc and the GND pin to GND.

The APA102 LEDs can be individually controlled with SPI communication using the CLK and
DATA pins. We set up the SPI protocol on the MCU, connecting SCK (pin PB10) to CLK and



MOSI (pin PB15) to DATA. The communication protocol is outlined in Fig 3. As an example, to
set all LEDs to red at full brightness, we first send a start frame of 32 zeros to signal to the strip ,
followed by 60 LED frames each with three 1s, then ‘Global’ set to five 1s, ‘Blue’ set to eight Os,
‘Green’ set to eight Os, and ‘Red’ set to eight 1s. Finally, we send an end frame of 32 1s to

signify the transmission is complete.
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Fig 3: SPI protocol for APA102 LED strip



3 Schematics
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Fig 4: Breadboard Schematic

4 Microcontroller Design

The microcontroller orchestrates the overall data flow by reading from the mic using ADC,
sending and receiving data from the FPGA over SPI, and sending control signals to the LED
strip over SPI. This three step process is repeated continuously, with each cycle corresponding to
a single 32 sample frequency and one update of the LEDs.

4.1 ADC

The first step the microcontroller completes is sampling 32 data points from the mic and
converting the analog voltage to a digital 16 bit value. To do so, we initialized the ADC in
‘STM32F401RE_ADC.c’ with the configureADC() function. This function initializes the ADC
to continuously make conversions on a single channel. Then, to sample at the desired frequency
of 8kHz, we read the data stored in the ADC data register (ADC->DR.DATA) every 125 ms. We
achieved this delay by initializing the MCU’s built-in timer 2 (TIM2) and calling



delay micros(TIM2, 125). After sampling 32 times and storing each 16 bit value in an array, we
then move on to sending the data to the FPGA for the FFT.

4.2 FPGA SPI

To send the audio waveform data to the FPGA, we used the MCU’s SPI1. The FFT requires 32
points of data, each consisting of a 16 bit real part and a 16 bit imaginary part. Since the audio
waveform signal consists only of real values, we simply sent 16 zeros for each imaginary part.
For the real part, the ADC outputs 16 bit real values, however, these are unsigned integers and
the fft requires 5 bits of overflow, meaning we can only send it values with 11 significant bits. To
account for this, we divided each digital ADC output by 10 since the original values were all
under 10,000 and any value under 1,000 has at most 10 significant bits. Finally, using the 16 bit
SPI send/receive function ‘spiSendReceivel6’, we sent the 32 real and imaginary data points to
the FPGA to perform the FFT.

After sending the data, the MCU waits for the FPGA to assert the DONE pin, letting the MCU
know the FFT has been completed and the FPGA is ready to send the data. Again using the 16
bit SPI send/receive function, the MCU reads in the 16 bit real part followed by the 16 bit
imaginary part of the FFT output 32 times, corresponding to 32 frequency buckets.

4.3 APA102 LED Lighting

The final part of the MCUSs control cycle is to update the LED strip based on the data received
from the FPGA. We also designed a way to drive the LEDs using just the ADC output data in the
case that the FPGA FFT data was not sufficient.

Using the FFT data, the MCU lights up the first 30 LEDs based on the amplitude of the first 30
frequencies of the discrete fourier transform (DFT) spectrum data. The updateBrightness
function, in STM32F401RE_APA102.c, sets 30 brightness levels ranging from 0 to 31 based on
the amplitude of the 30 frequencies. This is calculated for the DFT real imaginary pair by taking
the sum of the real part squared and the imaginary part squared and then normalizing so the max
value is 31 and the min is 0.

Without using the FFT data, the MCU uses the direct ADC output data by assigning each of the
first 30 LEDs and the second 30 LEDs to the first 30 samples. Similar to above, we normalize
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the sample data so all the values fall between 0 and 31. If the value for sample i is greater than
15, we set LED i and LED 30+ to full brightness. If the value is less than 15, we turn that LED
off. This makes the LEDs show the approximate sound wave by lighting up the upper have of the
wave and turning off the lower half.

At startup, before the above three step process runs continuously, we initialize the colors of the
LEDs which form a rainbow. We then run a startup sequence where the LEDs light up
sequentially several times. The colors of the LEDs remain constant for the duration of the
program and only their brightnesses change.

5 FPGA Design

When designing the FPGA logic, there were 2 main functions that the FPGA needed to perform:
the 32 point FFT, and the SPI communication link with the MCU. For reference, all FPGA logic
was created using the SystemVerilog code located in Appendix B.

5.1 32 Point FFT Design

The 32 point FFT was designed according to an implementation specified in George Slade’s
“The Fast Fourier Transform in Hardware: A Tutorial Based on an FPGA Implementation” [1].
This document details the implementation of a pipelined FFT using hardware. While we did not
implement the pipelined version of the FFT, many of the modules remain the same or only have
slight modifications that will be detailed below.

5.1.1 Butterfly Unit Module (BFU)

The Butterfly Unit Module is the most basic element of the FFT. It is simply a 2-point FFT on 2
complex numbers. A graphical representation of the calculation is shown below in figure 5.
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Fig 5: Graphical Representation of Butterfly Unit

Here A and B are the complex inputs, w is the twiddle factor described in section 5.1.2, and A’
and b’ are the outputs that will be stored in memory for future calculations. In essence, for a 32
point FFT, the BFU is used over and over with different A’s and B’s that are specified by the
AGU.

5.1.2 Twiddle Factor ROMs

The twiddle factors are constants that are multiplied to the B input of the Butterfly Unit Module.
These twiddle factors are constant regardless of the FFT input data and depend only on the
current step of the FFT being calculated. For a 32 point FFT, there are 16 twiddle factors for the
real component and 16 twiddle factors for the imaginary component. The twiddle factor used is
determined by the AGU. The value of the twiddle factors are determined using the following
equation:
jZmn

wh=pg N
Where N is the number of points of the FFT and n is defined as N/2. The twiddle factors for a 32
point FFT were calculated in the Slade paper [1], and are shown in figure 6:
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Fig 6: Table of Real & Imaginary Twiddle Factors
Because the twiddle factors are constant regardless of the input FFT data, the values for the real
and imaginary twiddle factors were hardcoded into respective real and imaginary twiddle factor

ROMs.

5.1.3 RAM Module

Due to the fact that the BFU could only compute the FFT for 2 points at a time, in order to determine a 32
point FFT we needed to create modules that continually stored the values output by the BFU so that they
could be used by the BFU again later. To implement this we determined it was easiest to implement 4
separate basic RAM modules. Each module would contain either the real or imaginary components of
either the A or B inputs to the BFU. Each RAM module would be controlled by the AGU individually.

5.1.4 Address Generation Unit (AGU)

The Address Generation Unit is the control module responsible for determining which step of the 32 point
FFT calculation is to be computed, selecting the correct values from the RAMs to be calculated, and
selecting the correct twiddle factors that are to be used. This module is also responsible for generating the
write signals to each of the RAMs that will allow us to store the most recently computed BFU outputs.
The way in which the RAM addresses and twiddle factors are generated are stated concisely in the Slade
paper and is cited in figure 7:



/v Generate addresses for dara and rtwiddles . +/
ja = j =< 1z /S Mulviply by 2 using feft shifr.
jb = ja + 1;

ja = ({ja << i) | (ja == (5 1))y & Ox1f; // Address 4; 3 bit cirewlar left shift
jb = ((jb << 1) | (jb == (5 1))y & Ox1f : // Address B implemented using U statemenis
Twaddr = ((OxfEEFFEFO = i) & Oxf) & j: // Twiddle addresses

Fig 7: Generation of RAM Addresses and Twiddle Factors

To ensure proper data flow of the FFT calculation a FSM was created. This FSM determined when write
enabled for the RAMs should be asserted, began FFT calculations when data was correctly loaded in and
informed the top level module when the calculation was completed.The transitions are shown in figure 8
and the next state logic is provided in appendix B.

Fig 8: Address Generation Unit FSM.

5.2 FPGA SPI Module

This module was responsible for collecting data to be transformed from the MCU and sending the
transformed data back to the MCU. Because we were computing a 32 point FFT on 32 bit complex data
the SPI module sent and received 32 x 32 = 1024 bits for each FFT calculation performed.

5.3 FPGA Top Level Control

This is the module responsible for the control of SPI communication on the FPGA, and the initiation of
the FFT calculation. Additionally, this is the part of the project where the failure described in the abstract
and introduction occurred. The SPI communication was designed to send 1024 bits at a time back to the
MCU and the FFT outputs were designed such that only 32 bits, 1 frequency output, were output from the
FFT module at each clock cycle. As a result we created an additional FSM that was responsible for
counting clock cycles allowing us to have enough time to load data into the FFT, wait for the FFT
calculation to begin producing outputs, and capture the correct outputs of the FFT. The next state diagram
for this FSM is shown in figure 9 and the next state logic is located Appendix B:
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Fig 9: Top-Level Module FSM

The problem that we encountered was during the READING state the FFT top level module was not
reading the correct data from the FFT output. Instead of reading the expected FFT data, only Os for both
real and imaginary magnitudes were collected and sent back to the SPI. We believe that this was due to us
not creating an elegant solution for our FSM. As mentioned above, this FSM switches states according to
a number of clock cycles. We determined that it would take a variable number of clock cycles to collect
data, 35 clock cycles to load data, 131 clock cycles to calculate data, and 32 clock cycles to read data.
Each state of the FSM included a counter that was intended to count to each of these values in each state
although there must have been an error in our determined number of clock cycles or next state logic as the
values that were read from the FFT RAM’s during the READING state were incorrect.

6 Results



6.1 FFT Testbench Outputs & Stored Output Values

The waveforms and corresponding output values were calculated using the square wave described in the
Slade paper [1].
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Fig 10: Testbench waveforms
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Fig 11: stored real & imaginary outputs

Because these values are what correspond to the FFT values of the square wave used in the slade paper,
we are confident that the hardware we developed is a valid implementation of a 32 point FFT

Lighting Configuration

Because the MCU was unable to receive the correct FFT output data, we used the ADC data directly as
described in section 4.3 above. The hat was able to display different wavelengths corresponding to
different frequencies.
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8 Bill of Materials

e Microphone

O HiLetgo 2pcs Electret Microphone Amplifier MAX4466 Module Adjustable Gain Blue

Breakout Board for Arduino

m  Amazon : Amazon.com: Hil etgo 2pcs Electret Microphone Amplifier
MAX4466 Module Adjustable Gain Blue Breakout Board for Arduino :

Electronics

e LED Strip
o Sparkfun: https://www.sparkfun.com/products/14015
o $1595

@
LED RGB Strip -
Addressable, Tm (APA102)

@© coM-14015
$15.95

2

e Cowboy Hat

o Amazon: https://www.amazon.com/Fun-Central-Studded-Cowboy-Western
o $10.99



https://web.mit.edu/6.111/www/f2017/handouts/FFTtutorial121102.pdf
http://cdn.sparkfun.com/datasheets/Components/LED/APA102C.pdf
https://www.amazon.com/HiLetgo-Electret-Microphone-Amplifier-Adjustable/dp/B07DRGF8C2/ref=pd_lpo_3?pd_rd_i=B07DRGF8C2&psc=1
https://www.amazon.com/HiLetgo-Electret-Microphone-Amplifier-Adjustable/dp/B07DRGF8C2/ref=pd_lpo_3?pd_rd_i=B07DRGF8C2&psc=1
https://www.amazon.com/HiLetgo-Electret-Microphone-Amplifier-Adjustable/dp/B07DRGF8C2/ref=pd_lpo_3?pd_rd_i=B07DRGF8C2&psc=1
https://www.sparkfun.com/products/14015
https://www.amazon.com/Fun-Central-Studded-Cowboy-Western

Total Cost: $35.33




9 Appendices

Appendix A: Microcontroller Code

Main.c

include <stdio.h

include "STM32F401RE.

define SUCCESS LED 1
define FAIL LED 0
define LOAD PIN 5
define DONE PIN 3

uintl6 t packets[32] =




uintlé t testPackets[32] =
0x03ff, 0x03ff, OxO03ff
Oxfc0l, Oxfc0l, OxfcOl
0x03ff, Ox03ff, Ox03ff
Oxfc01l, Ox£fcO0l, OxfcO1l

0x03ff
OxfcO01
0x03ff
OxfcO1

0x03ff
OxfcO01
0x03ff
OxfcO1

0x03ff
OxfcO01
0x03ff
OxfcO1

0x03ff
OxfcO01
0x03ff
OxfcO1

0x03ff
OxfcO01
0x03ff
OxfcO1

intl6 t testDfft[32][2] =

intlé t)Oxfffc
intlé6 t)0x0001
intlé t)0x0003
intlé t)0x0000
intlé6 t)0x0000
intlé6 t)0x0000
intlé t)0x0ffa
intlé t)0x0000
intlé6 t)0x0000
intlé t)0x0001
int16 t)0x0ffb
intlé t)0x0000
intlé6 t)0x0000
intlé6 t)0x0002
intlé t)O0x0ffc
intlé t)0x0004
intlé t)Oxfffc
intlé6 t)0x0001
intl6 t)0x0ffb
intl6 t)0x0000
intlé6 t)0x0000
intl6 t)0x0000
intlé6 t)0xO0ffa
intl6 t)0x0000
intlé6 t)0x0000
intlé t)0x0001
intl6 t)0x0ffb
intlé6 t)0x0000
intl6 t)0x0000
intlé t)0x0002

intl6 t)0x0000
intlé6 t)0x0000
intlé t)0x2692
intl6 t)0x0000
intl6 t)0x0000
intlé t)0x0000
intlé t)0x069e
intl6 t)0x0000
intl6 t)0x0000
intlé6 t)0x0000
intl6 t)0x£962
intl6 t)0x0000
intl6 t)0x0000
intlé t)0x0000
intlé t)0xd9ee
intl6 t)0x0000
intl6 t)0x0000
intl6 t)0x0000
intl6 t)0x2692
intl6 t)0x0000
intlé6 t)0x0000
intl6 t)0x0000
intl6 t)0x069e
intl6 t)0x0000
intl6 t)0x0000
intl6 t)0x0000
intlé t)0xf962
intl6 t)0x0000
intlé t)0x0000
intlé t)0x0000




intlé t)0x0ffc, (intl6 t)0xd96e
intl6 t)0x0004, (intlé6 t)0x0000

int main (void

configureFlash
configureClock

configureADC

RCC->AHB1ENR.GPIOAEN
RCC->AHB1ENR.GPIOCEN

pinMode (GPIOC, SUCCESS LED, GPIO OUTPUT
pinMode (GPTOC, FAIL LED, GPIO OUTPUT
digitalWrite (GPIOC, SUCCESS LED, 0
digitalWrite (GPIOC, FAIL LED, O

RCC->APB1lENR |= (1
initTIM (TIM2

initSPI1 (1, 0, O
initSPI2 (1, 0, O

pinMode (GPIOB, LOAD PIN, GPIO OUTPUT
pinMode (GPIOB, DONE PIN, GPIO INPUT

setColorsRainbow
updateLEDs
startSeqg (4

while (1




for(int i = 0; i < 32; i++

uintl6 t micOut = ADC->DR.DATA

packets[i] = (uintlé t float)micOut/10

delay micros (TIM2, 125

digitalWrite (GPIOB, LOAD PIN, 1
for(int i = 0; i < 32; i++

spiSendReceivel6 (SPI1, packets|[i
spiSendReceivel6 (SPI1, 0x0000
while (SPI1->SR.BSY

digitalWrite (GPIOB, LOAD PIN, O

while (!digitalRead (GPIOB, DONE PIN
dfftMaxVal = 0

for(int i = 0; 1 < 32




= packets|[i

updateBrightness
updateLEDs
delay millis (TIM2, 200

return O

ifndef STM32F4 ADC H
define STM32F4 ADC H

include <stdint.h




define ADC BASE (0x40012000UL

ypedef struct

IO uint32 t
IO uint32 t
IO uint32 t
IO uint32 t
IO uint32 t
IO uint32 t
IO uint32 t
ADC_SR bits

typedef struct
IO uint32 t AWDCH
IO uint32 t EOCIE
IO uint32 t AWDIE
IO uint32 t JEOCIE
IO uint32 t SCAN
IO uint32 t
IO uint32 t RES
__I0 uint32 t OVRIE
__I0 uint32 t
ADC CR1 bits

Lyr ef struct
IO uint32 t
IO uint32 t
IO uint32 ¢t
__I0 uint32 t
IO uint32 t
IO uint32 t




IO uint32 t ALIGN
IO uint32 t

10 uint32 t

__I0 uint32 t

__I0 uint32 t EXTSEL
10 uint32 t EXTEN
10 uint32 t SWSTART
__I0 uint32 t

ADC_CR2 bits

typedef struct
IO uint32 t
IO uint32 t
ADC SMPR2 bits

typedef struct
IO uint32 t
10 uint32 ¢t
ADC_HTR bits

ypedef struct
__I0 uint32 t
IO uint32 t
ADC_LTR bits

typedet struct
IO uint32 t
IO uint32 t
__I0 uint32 t
ADC_SQR1_bits

ypedef struct
IO uint32 t
IO uint32 t
IO uint32 t
ADC_SQR3 bits

typedef struct

IO uint32 t DATA : 16
IO uint32 t : 16




ADC DR bits

Lyr ef struct
IO uint32 t : 16
IO uint327t ADCPRE
IO uint32 ¢t

ADC_CCR bits

ef struct

__I0 ADC_SR bits SR
IO ADC_CR1 bits CR1
ADC_CR2 bits CR2
uint32 t SMPR1
ADC_SMPR2 bits SMPR2
uint32 t JOFR1
uint32_t JOFR2
uint32_t JOFR3

uint32 t JOFR4
ADC_HTR bits HTR

ADC_LTR bits LTR

ADC_SQR1 bits SQR1

uint32 t SQR2
ADC_SQR3 bits

uint32 t JSQR
uint32 t JDR1
uint32 t JDR2
uint32 t JDR3
uint32 t JDR4
ADC_DR bits DR




IO ADC_CCR bits CCR

ADC TypeDef

define ADC ADC TypeDef *) ADC BASE

void configureADC

endif

include "STM32F401RE ADC.h
include "STM32F401RE RCC.h
include "STM32F401RE GPIO.h

void configureADC
RCC->AHB1ENR.GPIOAEN = 1
pinMode (GPIOA, 1, GPIO ANALOG
RCC->APB2ENR [= (1 << 8

SQR1.L = 0b000O

SQOR3.501 0b00001
CR1.SCAN = 0
CR1.RES = 0b0O
CR2.ALIGN = 0
CR2.CONT =

CR2 .EXTEN




ADC->CR2.ADON =
ADC->CR2.SWSTART =

APA102.h
ifndef STM32F4 APA102 H
define STM32F4 APA102 H

include <stdint.h

define NUM LEDS 60
define NUMiREPEATS 1

uint8 t colors[NUM LEDS] [3
uint8 t brightness[NUM LEDS

intlé t Afft[32][2

intlé6 t dfftMaxVal

void ledFrame (uint8 t global, uint8 t r, uint8 t g, uint8 t b

void startFrame (void




endFrame (void

setColorsRainbow

updateLEDs

updateBrightness

void startSeq(int num

endif

APA102.c

STM32F401RE_RCC.h
include "STM32F401RE GPIO.h
include "STM32F401RE SPI.h
include "STM32F401RE TIM.h
include "STM32F401RE APA102.h

void ledFrame (uint8 t global, uint8 t r, uint8 t g, uint8 t b

uint8 t firstByte = (0blll << 5 global
spiSendReceive (SPI2, firstByte
spiSendReceive (SPI2, b

spiSendReceive (SPI2, g

spiSendReceive (SPI2, r

void startFrame




for(int i = 0; 1 < 4; i++

spiSendReceive (SPI2, 0x00

void endFrame
for(int i = 0; 1 < 4; i++

spiSendReceive (SPI2, OxFF

void setColorsRainbow
int lenSection = NUM LEDS / NUM REPEATS
float lenChunk = lenSection / 6
uinté t r OxFF
uinté t g OxFF
uinté t b O0xFF

for(int i = 0; i < NUM REPEATS; i++

for (int j 0; j < lenSection; j++

float = j % lenSection

lenChunk

OxFF
uint8 t k / lenChunk) * OxFF

if (k >= lenChunk && k < * lenChunk

uint8 t 2 * lenChunk - k) / lenChunk
OxFF
05400
lenChunk && k < “ lenChunk

k - 2 * lenChunk lenChunk
lenChunk && k < 4 * lenChunk

0x00
uinté t 4 * lenChunk - lenChunk




lenChunk &é& < * lenChunk

k - 5 * lenChunk) / lenChunk) * OxFF

lenChunk && k <= * lenChunk

* lenChunk - k) / lenChunk) * OxFF

OxFF
O0xFF
OxXFF

colors[i*lenSection
colors[i*lenSection

colors[i*lenSection

void updateLEDs
startFrame
for(int i = 0; i < NUM LEDS; i++

ledFrame (brightness|[i colors|[i colors[i] [1 colors[i] [2

endFrame

void updateBrightness
for(int i = 0; i < a4

for(int 3 = 0; j < 30




brightness[30*i+]j] =
31.0/100.0 > 15 ? 0x00 : Ox1F

void startSeq(int num

0; x < num; x++

for(int x

for(int k = 0; k < NUM LEDS/2

for(int i = 0; 1 < 2

for(int j = 0; j

uint8 t

a4

30

brightness[30*1+]

updateLEDs
delay millis (TIM2, 20

delay millis (TIM2, 100

ifndef STM32F4 SPI H
define STM32F4 SPI H

IRAF4F

float

dfft [

0

-150




include <stdint.h

0x40013000UL
0x40003800UL

define SPI1 BASE
define SPI2 BASE

define IO volatile

cypedef struct

IO
IO
IO
IO
IO
IO
__ IO
IO
IO
IO
IO
IO
IO
IO
IO

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

SPI_CR1 bits

ypedef struct

__ 10
__ 10
__ 10

uint32 t
uint32 t
uint32 t

CPHA
CPOL
MSTR

BR

SPE
LSBFIRST
SST

SSM
RXONLY
DFF
CRCNEXT
CRCEN
BIDIOE
BIDIMODE

RXDMAEN
TXDMAEN
SSOE

1
1
1
3
1
1
1
1
1
1
1
1
1
1
1




10
10
__I0
__ 10
__ 10
__I0

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

SPI_CR2 bits

ypede

SPI

typede

10
IO

f struct
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

SR bits

f struct
uint32 t
uint32 t

SPI_DR bits

mmede
peade

f struct

FRF
ERRIE
RXNEIE
TXEIE

RXNE
TXE
CHSIDE
UDR
CRCERR
MODF
OVR

BSY

FRE

DF'F
CRCNEXT
CRCEN
BIDIOE
BIDIMODE

IO SPI_CR1 bits CR1

IO SPI_CR2 bits CR2

__I0 SPI_SR bits SR

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1




SPI DR bits DR

uint32_t CRCPR

uint32 t RXCRCR

uint32 t TXCRCR

uint32 t I2SCFGR

uint32 t I2SPR

SPI TypeDef

define SPI1 ((SPI_TypeDef *) SPI1l BASE

define SPI2 SPI TypeDef *) SPI2 BASE




void initSPI1 (uint32 t clkdivide, uint32 t cpol, uint32 t ncpha

void initSPI2 (uint32 t clkdivide, uint32 t cpol, uint32 t ncpha

uint8 t spiSendReceive (SPI TypeDef * SPIx, uint8 t send

uintl6 t spiSendReceivel6 (SPI TypeDef * SPIx, uintlé t send

endif

include "STM32F401RE SPI.h
include "STM32F401RE RCC.h
include "STM32F401RE GPIO.h




void spiInit (SPI TypeDef
cpha
SPIx->CR1.BR = br
SPIx->CR1.CPOL = cpol
SPIx->CR1.CPHA = cpha
SPIx->CR1.LSBFIRST =

CR1
CR2

CR1
CR1

void initSPI1 (uint32 t br

RCC->AHB1lENR.GPIOAEN

RCC->AHB1lENR.GPIOBEN

RCC->APB2ENR |= (1

*

0

SPIx, uint32 t br, uint32 t cpol

uint32 t cpol

pinMode GPIO ALT

pinMode GPIO ALT
pinMode GPIO ALT
pinMode GPIO OUTPUT

GPIOA->OSPEEDR |[= (0b

SPI1->CR1.DFF = 1
spiInit (SPI1, br, cpo

void 1initSPI2 (uint32 t br

11

18
22
26
30

1

2%5

cpha

uint32 t cpol

uint32 t cpha

uint32 t cpha

uint32 t




RCC->AHB1lENR.GPIOAEN
RCC->AHB1lENR.GPIOBEN

RCC->APB1ENR |[= (1

pinMode (GPIOB, 10 GPIO ALT
pinMode (GPIOB, 15, GPIO ALT

GPIOB->OSPEEDR |= (0bll

GPIOB->AFRH << 10
GPIOB->AFRH << 30

SPI2->CR1.DFF = 0
spiInit (SPI2, br, cpol, cpha

uint8 t spiSendReceive (SPI TypeDef * SPIx, uint8 t send
while (! (SPIx->SR.TXE
SPIx->DR.DR = send
while (! (SPIx-—>SR.RXNE
uint8 t rec = SPIx->DR.DR

return recC

uintl6 t spiSendReceivel6 (SPI TypeDef * SPIx, uintlé t send
digitalWrite (GPIOB, 6, O
SPIx->CR1.SPE =
SPIx->DR.DR = send




while (! (SPIx->SR.RXNE
uintl6é t rec = SPIx->DR.DR

SPIx->CR1.SPE = 0
digitalWrite (GPIOB, 6, 1

return rec

Appendix B: System Verilog

FFT Top-Level Module

module FinalMWRG (input logic clk, reset, sck, sdi, spiload,

output logic done, sdo);

0] fftinput, fftoutput;

0] fftDatalIn, fftDataOut;

ittLoad

ittCalc

ittRead
[31:0] wd, tempwd;
[15:0] outputReal, outputlImag;
load, start;

spi (sck, sdi, sdo, done, fftinput, fftoutput):;

core (clk, reset, start, load, wd, outputReal,

outputlmag,




typedef enum [2:0]

SENDING, NULL} statetype;

{COLLECTING, LOADING,

currentState, nextState;

always ff @(

clk) begin

currentState = nextState;

if (spiload) begin
nextState

fftDataln

COLLECTING;
fftinput;

end

case (currentState)

COLLECTING:
begin
load = 0;
start = 0;
if (spiload)begin

nextState = COLLECTING;
end

else
begin

nextState = LOADING;
end

end

LOADING:
begin
load = 1;
start = 0;
if (ittLoad < 32)

CALCULATING, READING,




nextState
ittLoad =
end
else begin
ittLoad
nextState
end

end

CALCULATING:
begin
load = 0;

start = 1;

= LOADING;
ittLoad + 1;

0;
= CALCULATING;

if(ittCalc < 131)begin

nextState
ittCalc
end
else begin
ittCalc

nextState

READING:

begin
load =

start =

0;
0;

= CALCULATING;
ittCalc + 1;

0;
= READING;

if (ittRead < 32)begin

nextState =

ittRead =

end

else begin
ittRead =
nextState

READING;
ittRead + 1;

0;
= SENDING;




SENDING:
begin
load = 0;
start = 0;
nextState = SENDING;

end

NULL:
begin
if (spiload) nextState = COLLECTING;

else begin

load = 0;
start = 0;

end

default:

begin
load = 0;
start = 0;

end

endcase

ittRead)

fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut

case
31:0] = {outputReal, outputlImag};

63:32] {outputReal, outputImag};
95:064] {outputReal, outputImag};
127:96] = {outputReal, outputImag};

fftDataOut
fftDataOut
fftDataOut

191: {outputReal, outputImag};
223: {outputReal, outputlImag};

~ o o b w N P O ~

[
[
[
[
fftDataOut[159: {outputReal, outputImag};
[
[
[

255: {outputReal, outputlImag};




8: fftDataOut[287:256]
9: fftDataOut[319:288]

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21 g
22
ACH
24:
2578
A
27:
28:
293¢
30:
31:
default: ;
endcase
case (ittLoad)
tempwd
tempwd
tempwd
tempwd
tempwd
tempwd
tempwd
tempwd
tempwd
tempwd
tempwd

R P O 0 J o U b w N PO ~

= O

tempwd

fftDatalOut
fftDataOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut
fftDatalOut

[351:
[383:
[415:
[447:
[479:
[511:
[543:
[575:
[607:
[639:
[671:
[703:
[735:
[767:
[799:
[831:
[863:
[895:
[927:
[959:
[991 g
[1023:992]

{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,
{outputReal,

= {outputReal

fftinput[31:0];
fftinput[63:32];
fftinput[95:64];

fftinput[127:
fftinput[159:
fftinput[191:
fftinput[223:
fftinput[255
fftinput[287:
fftinput[319:

fftinput[351:320
fftinput[383:352

]
]
]
12247 ;
]
]

96];
128
160
192

r

r

’

r

256
288

r

’

’

]
]

outputImag};

outputImag};

outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputlImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
outputImag};
, outputlmag};




12: tempwd fftinput[415:
13: tempwd fftinput[447:
14: tempwd fftinput[479:
15: tempwd fftinput[511:
16: tempwd fftinput[543:
17: tempwd fftinput[575:
18: tempwd fftinput[607:
19: tempwd fftinput[639:
20: tempwd fftinput[671:
21: tempwd fftinput[703:
22: tempwd fftinput[735:
23: tempwd fftinput[767:

24: tempwd fftinput[799:

25: tempwd fftinput[831:

26: tempwd fftinput[863:

27: tempwd fftinput[895:

28: tempwd fftinput[927:

29: tempwd fftinput[959:

30: tempwd fftinput[991:

31: tempwd fftinput[1023:992];

default tempwd = 32'b0;
endcase

end

assign wd = tempwd;
assign fftoutput = fftDataOut;

endmodule

FFT SPI Module

module fft spi (input sck,
input sdi,
output sdo,
input done,
output [1023:0] fftinput,
input [1023:0] fftoutput) ;

sdodelayed, wasdone;
[1023:0] fftoutputcaptured;




always ff @Q( sck)

if (!'wasdone) {fftoutputcaptured, fftinput} {fftoutput,

fftinput[1022:0], sdi};
else {fftoutputcaptured, fftinput}
{fftoutputcaptured([1022:0], fftinput, sdi};

always ff @( sck) begin
wasdone = done;
sdodelayed = fftoutputcaptured[1022];

end

assign sdo = (done & !wasdone) ? fftoutput[1023] : sdodelayed;

endmodule

fft core Module
module fft core (input clk, reset, start, load,
input [31:0] wd,
output [15:0] outputReal,

output done) ;

wenO, wenl, clear, rdsel;

[3:0] k;

[4:0] adrOa, adrOb, adrla, adrlb;
[15:0] twiddleReal, twiddleImag;

[31:0] ain, bin, aout, bout, rdOa, rdla, rdOb, rdlb, wda, wdb;

assign wda load ? wd : aout;

assign wdb load ? wd : bout;

outputlmag,




agu(clk, reset, start, load

clear, rdsel, k, adrOa, adrOb);

assign adrla adrQOa;

assign adrlb adrOb;

twReal (clk, k,

k,

twiddleReal) ;

twImag (clk, twiddleImagqg) ;

rOr (clk,
:16]);
rO0i(clk,
:01) 7
rlr(clk,
:16]);
rli(clk,
:01) 7

16], wdb|[

0], wdb[1
:16], wdb]
:0], wdb[1

rdsel ? rdla

rdsel ? rdlb

rd0a;
rd0b;

assign ain

assign bin

bf (ain[31:167],
twiddleReal,
aout[31:16],

ain[15:01],
twiddleImag,
bout[31:16],

bin[31:16

aout[15:0]

assign outputReal ain[31:16];

assign outputImag bin[15:0];

endmodule

Address Generation Unit Module

module AddressGenerationUnit (input

clk, reset,

output done, we?2,

[3:0]

wel,

Kk,

clear, mem

output

, done, wenO, wenl,

31:16], rdOaf[3l:16],

5:0], rd0a[l15:0],
31:16], rdlaf[3l:16],

5:0], rdla[1l5:017,

], bin[15:07,

bout[15:0]) ;

4

start,

Select,

load,




[4:0] addressA, addressB);

typedef enum [2:0] {WAIT, LOAD, READ, WRITE, CLEAR, DONE}

statetype;

currentState, nextState;

[5:0] counter;
always ff @Q( clk)
begin
if (reset) counter <= 0;
else counter <= counter + 1;

end

[2:0] i, inext;

[4:0] j, Jnext, jshift;

always ff @Q( clk,

if (reset) begin
currentState <= WAIT;
i <= 0;
J <= 0;

end else if (clear) begin
currentState <= nextState;
i <= 0;
J <= 0;

end else begin
currentState <= nextState;
1 <= inext;
J <= jnext;

end

always comb

case (currentState)




WAIT: if (start) nextState <= CLEAR;
else 1f (load) nextState <= LOAD;
else nextState <= WAIT;

LOAD: if (counter < 32) nextState <=
else begin
nextState <= WAIT;

end

READ: nextState <= WRITE;

WRITE: if (i == 4 && j == 15) nextState
else nextState <= READ;

CLEAR:

nextState <= READ;

DONE: nextState <= DONE;

default: nextState <= WAIT;

endcase

always comb

case (currentState)




end else begin
Jjnext = j + 1;
inext = 1i;
end
end
default:
begin
inext
Jjnext
end

endcase

[4:0] counterRev;

brl (counter[4:0], counterRev);

assign jshift = j << 1;

assign addressA = (currentState == LOAD) ? counterRev ((Jshift << i)
& 8'hlf;

| (jshift >> (5 - 1)))

= (nextState == LOAD) ? counterRev (((Jshift + 1) <<

assign addressB
- 1i))) & 8'hlf;

((jshift + 1) >> (5

i)

assign k = ((32'hfffffff0 >> i) & 4'hf) & 7;

((currentState == WRITE) && memSelect) ;

assign wel load

assign we?2 ~memSelect && (currentState == WRITE) ;




(currentState == DONE) ;
(currentState == CLEAR);

ign memSelect

endmo

ButterflyUnit Module

module ButterflyUnit (input [15:0] aReal, aImag, bReal, bImag,

endmodule

input [15:0] tReal, tImag,
output [15:0] xReal, yReal, xImag,

[31:0] tbReal, tbImag;

tbImag bReal * tImag + bImag * tReal;
tbReal bReal * tReal - bImag * tImag;

aReal + tbReal[30:15];
almag + tbImag[30:15];

aReal - tbReal[30:15];
almag - tbImag[30:15];

Twiddle ROMs Modules




module RealTwiddles (input clk,
input [3:0] k,
output [15:0] twiddle);

always comb begin

case (k)
4'p0000: twiddle 16'h7fff;
4'p0001: twiddle 16'h7d89;
4'p0010: twiddle 16'h7641;
4'b0011: twiddle 16'h6a6d;
4'p0100: twiddle 16'h5a82;
4'p0101: twiddle 16'h471c;
4'p0110: twiddle 16'h30fb;
4'p0111l: twiddle 16'h18£9;
4'p1000: twiddle 16'h0000;
4'p1001: twiddle 16'he707;
4'p1010: twiddle 16'hcf05;
4'p1011: twiddle 16"'hb8e4;
4'1100: twiddle 16'hab7e;
4'p1101: twiddle 16'h9593;
4'p1110: twiddle 16'h89bf;
4'p1111: twiddle 16'h8277;
default: twiddle l6'hl1111;
endcase
end

endmodule: RealTwiddles




module ImagTwiddles

(input

input

clk,

output

always comb begin

case (k)

4'b0000:
4'b0001:
4'b0010:
4'b0011:
4'b0100:
4'b0101:
4'b0110:
4'pb0111:
4'b1000:
4'b1001:
4'1010:
4'p1011:
4'b1100:
4'p1101:
4'p1110:
4'pb1111:
default:

endcase

end

twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle
twiddle

endmodule: ImagTwiddles

RAM Module

16'h0000;
16'h1859;
16'h30fb;
16'hd471c;
16'h5a82;
16'h6a6d;
16'h7641;
16'h7d89;
16'h7£fff;
16'h7d89;
16'h7641;
16'h6a6d;
16'h5a82;
16'h471c;
16'h30£fb;
16'h1859;
16'h0000;

[3:0] Kk,

[15:0]

twiddle) ;




module RAM (input clk, we,
input [4:0] addressB, addressA,
input [15:0] aWriteData, bWriteData,
output [15:0] aReadDbata, bReadData);

[15:0] mem array [0:31];

always ff@( clk) begin

if (we) begin
mem array [addressB] <= aWriteData;

mem array [addressA] <= bWriteData;

aReadData aWriteData;
bReadData bWriteData;
end

else begin

aReadData mem array[addressB];

bReadData mem array[addressA];

end




AGU FSM Next State Logic

Source 5tate  Destination State

1 CLEAR READ

2 DOMNE DOME

3 LOAD LOAD (lcounter[0]).lcounter[1]).'counter[2]).['counter3]).(lcounter[4]) + ('counter[0]).(lcounter[1]).(lcounter[2]).('counter[3]).(co
4 LOAD WAIT (lcounter[0])['counter[ 1]).(lcounter2]).['counter] 3] (counter[4]).[counter[3]) + (lcounter[0]).(lcounter[ 1]).(lcounter[2]).(cou
5 READ WRITE

6 WAIT LOAD (load).(1start)

7 OWAIT WAIT (lload).('start)

g WAIT CLEAR (start)

9 WRITE READ (talways2)

10 WRITE DOME (always2)

Top-Level Module Next State Logic

e Destination State

1% READING tittCale[2]) tittCale[3]). (ittCalc[4]) fittCale[5]) (ittCalel6]). (ttCale[7]) + (tittCale[2]). (ittCalc[3]) (ittCalc[4]) fittCale 5] (ittC
2 CALCULATING CALCULATING  (ittCalc[2]) (ittCalc[3]) littCalc[4]).NittCalc[5]) (ittCalc[B]) + (ittCalc[2]) (ittCale[3]).(ittCalc[4]) littCalc[5]) fittCalcl6]). (itt
3 COLLECTING COLLECTING (spiload)

4 COLLECTING LOADING I'spiload)

5 LOADING LOADING (littLoad[0]).(iittLoad[1]). (ittLoad[2]} (ittLoad[3]). (ittLoad[4]) + [ittLoad[0]).(littLoad[1]). (ittLoad[2]).littLoad[3]).(ttLoad(:
& LOADING CALCULATING  (littLoad[0]).(littLoad[1]) littLoad[2]). (ittLoad[3]) [ittLoad[4]} (ittLoad[5]) + (littLoad[0]). (ittLoad[ 1]} (ittLoad[ 2]} (ittLoad[3]
7 READING READING littRead[0]).(ittRead[1]).(ittRead[ 2]} (ittRead[3]). (ittRead[4]) + [ittRead[0]).(littRead[1]). (ittRead[2]).littRead[3]).(ttRead[«
8 READING SENDING littRead[0]).(ittRead[1]).(ittRead[2]} (ittRead[3]). (ittRead[4]) (ittRead[5]) + littRead[0]). ittRead[1]).(ittRead[2]) (ittRead[3]
9 SENDING SENDING



